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Abstract
The imperfect decision-making of human buyers participating in retail markets varies
from fundamentalmodels that assume rational economic choices: even inmarketswith
identical items human buyers are not rational, i.e., buyers do not always choose the
cheapest option. Recent developments in artificial intelligence and e-commerce enable
market participation by software agents that are (almost) perfectly rational due to their
computational capacity. However, the increasing degree of buyers’ rationality might
have unfavorable effects on retail markets with regards to the competition between
sellers and the resulting prices. In this paper, we study the effects of varying degrees
of buyers’ rationality on the competition and the prices buyers face in retail markets
with identical items. We use the multinomial logit function to model different degrees
of buyers’ rationality. We further model the competition between sellers using k-level
reasoning: each seller computes the price to offer (best response strategy) with regards
to its belief for the competition. First, we derive an analytical best response strategy
(price) of a seller given the competing prices and the degree of buyers’ rationality,
and show that there exists an optimal degree of buyers’ rationality that minimizes the
price. Last, we use evolutionary game theory to show that perfect rationality leads
to unstable competition dynamics increasing the overall cost for buyers. In contrast,
bounded rationality leads to smoother dynamics and lower cost for buyers.Our insights
raise the need to revisit design objectives for software agents in retail markets in light
of their wider systematic impact.
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1 Introduction

Classical game theoretical models that study strategic interactions between self-
interested decision-makers (agents) assume the presence of intelligent and rational
agents (Nisan et al. 2007; Nash 1950; Sutton and Barto 1998). However, the appli-
cation of these models in specific domains mitigates the rationality assumption since
agents do not usually have perfect knowledge of the environment (Russell and Thaler
1985). Economic markets and consequently economic decisions of human buyers
that participate in these markets is one instance where agents do not exhibit ratio-
nal behavior (Conlisk 1996; Rubinstein 1998). Bounded rationality is a fundamental
model that studies the imperfect decision-making of otherwise rational agents due to,
e.g., imperfect information, limited computational resources or decision time (Simon
1982). Without perfect information, a bounded rational decision-maker may act ratio-
nally over a limited set of choices. For the remainder of this paper, we describe rational
agents as perfectly rational, while bounded rational agents are agents of lower (unspec-
ified) degree of rationality.

Automated agents already operate in agent-mediated e-commerce (He et al. 2003;
Guttman et al. 1999; Maes et al. 1999), and it is inevitable that in future economies
human will be replaced by software as a principal agent of economic decision mak-
ing (Marwala and Hurwitz 2017). In addition, recent advancements in e-commerce
and fields ofArtificial Intelligence such asDeepLearning (Goodfellow et al. 2016) and
AutomatedNegotiation (Baarslag et al. 2017) illustrate the potential to further enhance
the abilities of agents in the complex settings of economic markets. It is therefore of
great interest to study the effects that perfectly rational decision makers have on fun-
damental economic paradigms such as retail markets, and try gain further insights in
order to answer the following question: should the behavior of self-interested agents
be made perfectly rational?

In this paper, we consider retail markets where sellers compete by offering prices
for identical items to buyers, e.g., electricity markets. Each seller has a private cost
for the items, e.g., procurement or production cost, and an infinite inventory of items.
Sellers offer items to buyers at specific prices simultaneously in order to control
a high market share and increase their profits. Assuming that buyers are perfectly
rational (i.e., they choose the lowest price with probability one), this is known as
the Bertrand competition, of which the Nash equilibrium is the competitive price in
the case that sellers have the same private costs (Bertrand 1988). At the competitive
price equilibrium, each seller sets a price equal to its private cost and market is shared
equally among the sellers; no seller has an incentive to deviate from the competitive
price since a higher price results in zero market share, and a lower price in negative
utility for the seller.

The resulting competitive price equilibrium is formed under the following assump-
tions: (i) sellers have no model of opponent sellers, and thus no information regarding
the competing prices, and (ii) buyers are perfectly rational, i.e., they select the lowest
price with probability one. However, assumption (i) is not trivial in repeated markets
where sellers can observe opponent prices and therefore model their competition (i.e.,
opponent modeling) (Albrecht and Stone 2017). Also, assumption (ii) does not hold
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in practice, unless we consider small-scale markets with limited options for buyers
and thus perfect knowledge.

Motivated by assumptions (i) and (ii), we study the effects of different degrees of
buyers’ rationality in retail markets on the competition and consequently the resulting
prices for the buyers. To study the influence of varying degrees of buyers’ rationality
we use the multinomial logit function (McFadden 1975; Anas 1983), which is widely
used in the economics literature to model buyers’ stochastic decision-making when
facing different prices. Furthermore, to model the competition between sellers we use
k-level reasoning (Stahl and Wilson 1995; Camerer et al. 2004). In k-level reasoning,
k denotes the depth of strategic reasoning of an agent. A 0-level agent has no model
of the opponents and therefore is not strategic, 0-level agent uses a fixed or a random
strategy. A k-level agent reasons with regards to its belief for the reasoning levels of its
opponents. According to the standard assumption of k-level reasoning, a k-level agent
believes to be facing (k − 1)-level agents. In the studied setting, we analyze the best
response strategy of a strategic seller (i.e., the price to offers to buyers) with regards
to the prices posted by the competition. We further use evolutionary game theory to
study the evolution of the competition in repeated interactions between sellers for a
given degree of buyers’ rationality.

The main contributions of this work can be summarized as follows:

– First, we derive an analytical best response strategy of a strategic seller given a set
of opponent prices and the degree of buyers’ rationality.

– Interestingly, we show that buyers maximize their utility by not being perfectly
rational in their choices.

– We use evolutionary dynamics to study the evolution of competition between
sellers and show an evolutionary advantage of higher-level reasoning sellers when
using the standard assumption of k-level reasoning.

– We extend the standard assumption of k-level reasoning towards a more realistic
belief model for the competition (true distribution over lower reasoning levels),
and we observe that perfect rationality contributes to monopolistic behavior of
higher-level reasoning sellers and unstable competition dynamics.

– In contrast to perfect rationality, we show that bounded rationality leads to
smoother competition dynamics and higher benefits for buyers.

To the best of our knowledge, we present the first study that combines bounded ratio-
nality in the price selection of buyers and opponent modeling for the sellers (k-level
reasoning) within the Bertrand competition model to study the effects of different
degrees of buyers’ rationality on the competition and prices.

Overall, the main objective of this work is not limited to study the consequences
of varying degrees of buyers’ rationality in retail markets with identical items on the
competition between sellers and the resulting evolutionary dynamics of the compe-
tition; it also adds fundamental knowledge that can be used for the design of future
agent-based automated markets with commodities (e.g., future electricity markets),
and general competitive multi-agent settings with heterogeneous agents.

The remainder of this paper is organized as follows: Sect. 2 provides an overview
of the literature that is relevant to our work. Next, in Sect. 3 we introduce the market
model. In Sect. 4 we derive analytical best response strategies for strategic sellers
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with regards to prices offered by the competition and the degree of buyers’ rationality,
we also present experiments to verify our theoretical findings. In Sect. 5 we introduce
concepts from evolutionary game theory and use them to show the effects of the degree
of buyers’ rationality in repeated interactions in retail markets. In Sect. 6 we provide
a discussion on the insights of our results. Last, in Sect. 7 we conclude this paper.

2 RelatedWork

Bertrand competition and many of its variants is a well-studied market model in the
literature (Spulber 1995; Dufwenberg and Gneezy 2000; Caragiannis et al. 2017). For
instance, Spulber (1995) studies the Nash equilibrium in the Bertrand competition
and shows that when rivals’ costs are unknown, each seller offers a price above its
marginal cost and has positive expected utility. In other work, Caragiannis et al. (2017)
study markets with multiple sellers that offer identical items to buyers with different
valuations on each seller. The authorsmodel this setting as a two-stage full-information
game and show the price of anarchy and the efficiency of computing equilibria in
this game. In this work we study settings within the Bertrand market model without
assuming a full-information setting for sellers: sellers have only a belief about the
competition they face.

A similar model to Bertrand in which sellers decide on the quantity of items to
sell without any knowledge of the competition is the Cournot (Allaz and Vila 1993).
Singh and Vives (1984) study the connection between the Bertrand and the Cournot
competition models by analyzing the duality of prices and quantities in differentiated
duopolies. For retail markets we study in this paper, the Bertrandmodel is better suited
than the Cournot, in which sellers can only alter the price for items but not the quantity
to sell (Weber 2006).

As described in the introduction of this paper, the classical price competition model
named after Bertrand (1988) prescribes that in equilibrium sellers set prices equal to
their private costs. However, this equilibrium outcome is not in line with real-life
observations in which buyers are not rational in their choices over prices, and in which
sellers model their competition. In addition, Dufwenberg and Gneezy (2000) show
that the resulting prices that sellers offer to buyers further depend on the number of
sellers that compete in the market. This is known as the Bertrand Paradox (Bruttel
2009;Dufwenberg andGneezy 2000).Alignedwith theBertrand Paradox,we consider
buyers that are bounded rational and use a stochastic model of choosing over prices.
More specifically, we use the multinomial logit function to model the stochastic price
selection of buyers (Anas 1983). Otherworksmake use of theLuce choice axiom (Luce
1959), or the Softmax function (Sutton and Barto 1998) to model bounded rationality
of buyers in markets (Basov and Danilkina 2015; Ait Omar et al. 2017).

Previous work has also studied the effects of bounded rationality on Bertrand mar-
kets (Basov andDanilkina 2015; Ait Omar et al. 2017; Zhang et al. 2009). For instance,
Zhang et al. (2009) consider a Bertrand model with bounded rational sellers and study
convergence properties of the competition. In the closest to ours work, Basov and
Danilkina (2015) study price equilibria with regards to the degree of buyers’ rational-
ity. They propose a model where sellers can choose to educate or confuse buyers, i.e.,
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increase or decrease their degree of rationality respectively, and present the effects of
these choices. Extending previous results (Basov and Danilkina 2015), Ait Omar et al.
(2017) show that within a Bertrand oligopoly, sellers can benefit if buyers have lower
degree of rationality. Our model substantially differentiates from the aforementioned
work in the following ways. First, we consider automated (software) agents in place of
human buyers. In this setting, agents of high computational capacity can reach levels
of (almost) perfect rationality, and thus the degree of buyers’ rationality can not be
manipulated by sellers.

The effects of bounded rational agents have also been studied with regards to learn-
ing agents, as the concept of bounded rationality is associated to the exploration Vs.
exploitation problem in reinforcement learning (Sutton and Barto 1998). For instance,
Wunder et al. (2010b) study the effects of the exploration rate of players on the result-
ing players’ payoffs in two-player prisoners’ dilemma games. The authors show that
increasing exploration rate (i.e., lowering the frequency of using a greedy policy)
results in higher than in Nash equilibrium payoffs for players.

Last, in this work we consider sellers of heterogeneous reasoning levels using
hierarchical reasoning to model competition. Hierarchical (k-level) reasoning has also
been used in other fundamental game-theoretical domains tomodel opponents (Hu and
Wellman 2001; Hennes et al. 2012;Wunder et al. 2010a; Lindner and Sutter 2013). Hu
and Wellman (2001) use k-level reasoning to learn the strategies of opponent agents
(opponentmodeling) in double-auctions. The authors conclude thatmore sophisticated
modeling (high hierarchical reasoning level) does not guarantee an improvement in the
performance of agents. In contrast to work by Hu andWellman (2001), we use k-level
reasoning to compute the best response strategy of a reasoning seller with regards to
lower levels of reasoning. Consequently, higher levels of reasoning result in higher
performance, since lower levels of reasoning function under limited information with
regards to the competition. Our work is more related to literature that uses hierarchical
reasoning to model varying information levels. More specifically, Hennes et al. (2012)
use k-level reasoning to analyze the competitive advantage of high information access
inmarkets. They conclude that random traders achieve in expectation higher gains than
traders under partial information, who are in turn exploited by higher information level
traders.

3 Market Model

In this section, we present our basic market setting, we also show how we model
different degrees of buyers’ rationality and the competition between sellers.

We use the Bertrand model (Bertrand 1988) to study retail markets where sellers
offer identical items to a finite population of buyers, assuming that sellers have an
infinite inventory of items, and equal private costs. In practice, e.g., in electricity retail
markets private costs for electricity do not vary significantly. We define ci > 0 as the
private cost of seller i , and pi as the price that seller i offers to buyers (pi is the decision
of seller i), p is the vector of prices set by all sellers. Furthermore, p−i denotes the
vector of prices set by sellers other that i . Both the price pi and the prices of sellers
other than i , determine the utility of seller i ,
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ui = (pi − ci )si (p), (1)

where si (p) is the function that maps the vector of prices p to the market share of
seller i , i.e., si : p → [0, 1] ∈ R, such that

∑
i si (p) = 1. We assume that the price of

seller i can not be lower than its private cost ci , pi ≥ c, since for any positive market
share, si (p) > 0, pi < ci results in negative utility for seller i .

3.1 Degree of Buyers’Rationality

In the retail market setting we consider, sellers offer identical items at specific prices
to buyers. Buyers choose the price and consequently the seller to buy the items from.
Assuming that buyers are perfectly rational, they choose the lowest price with proba-
bility one. In practice, however, buyers use a stochastic model for choosing over the
offered prices (i.e., buyers are bounded rational) (Rubinstein 1998).

We use the multinomial logit function alongside the Bertrand market model, to
study the effects of different degrees of buyers’ rationality as is standard in economic
literature (McFadden 1975; Berry and Pakes 2007). The fraction of buyers that choose
price pi (market share of seller i) is given by:

si (p) = e−pi /τ

∑
j e−p j /τ

,∀τ ∈ (0,∞), (2)

where τ is the coefficient that exaggerates or diminishes the contrast between different
prices for the buyers.

Remark 1 Wemodel the collective degree of buyers’ rationality and not the individual
degrees of rationality within the population of buyers.

The quantity si (p) can be interpreted as the probability that an individual buyer out
of the buyers’ population chooses price pi . For τ close to zero (τ → 0), buyers are
approximately perfectly rational choosing the lowest price with probability one, while
for high values of τ (τ → ∞), buyers choose over prices with equal probability (uni-
formly random). The parameter τ can be adjusted tomodel different degrees of buyers’
rationality, between (almost) perfect rational buyers and buyers that choose over prices
randomly. Equation (2) is identical to the Quantal response function (Mattsson and
Weibull 2002), and the Softmax function (Sutton and Barto 1998) that is used in
reinforcement learning to map a learning agent’s actions into probabilities.

Last, we compute the cost for the buyers as follows:

∑

i

si (p) × pi , (3)

where the cost is equal to the sum of sellers’ prices weighted by the market share of
each seller (average price for the buyers).
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3.2 k-level Reasoning and Competition

In the previous section, we described the basic market model and outlined the decision
of buyers over different prices with regards to their collective degree of rationality τ

(see Eq. 2).
The present and following sections discuss how sellers decide the prices to offer to

buyers. Since sellers can not influence the degree of buyers’ rationality, the decision
of a seller with regards to the price (i.e., strategy) to offer to buyers is only influenced
by prices posted by its competition (other sellers). We consider that sellers model
their competition using k-level reasoning, where k denotes the reasoning level of a
seller (Stahl and Wilson 1995). This resembles sellers that can have varying informa-
tion levels or computational resources. For the remainder of the paper, Lk stands for
the k-th level of reasoning.

First, we consider L0 sellers. A L0 seller does not model opponent sellers, and
therefore its strategy (price) does not consider opponent prices. For higher levels of
reasoning (k > 0), standard models of k-level reasoning assume the following: A Lk
agent believes to be facing L(k−1) agents (Arad andRubinstein 2012;HuandWellman
2001). Other models of k-level reasoning modify the aforementioned assumption as
follows: A Lk agent has a belief with regards to the probability of meeting each of
the lower levels (Camerer et al. 2004). In this paper, we use both models. Last, in
k-level reasoning no Lk agent believes that it competes against agents of equal or
higher reasoning levels.

For generality, we assume that Lk seller has a belief distribution over lower rea-
soning levels. Let x denote the vector of the true distribution over levels of reasoning,
where each entry xk denotes the probability (frequency) that Lk appears in the pop-
ulation of sellers. We define λk as the belief distribution of Lk seller with regards
to the true distribution x , λk consists of k entries (the first entry is the frequency of
L0 in the population), λk = 〈λ0, λ1, . . . , λk−1〉. Each entry λz

k is the probability of

competing against Lz seller,
∑k−1

z=0 λz
k = 1. Note that, L0 does not have a belief for

the competition and for k > 0, sellers of the same reasoning level have identical
beliefs with regards to the competition. Given the belief λk , we proceed to derive the
best response strategy of Lk seller, i.e., the price to offer to buyers that maximizes its
utility.

4 k-Level Best Response Strategies

In this section, we illustrate the best response strategy (price) of Lk seller i given λk

and the private cost ci . For brevity, we omit i from the notation since Lk is independent
of seller i .

We define π∗
k as the best response strategy of Lk; π∗

k is the function that maps:
(i) the private cost c, (ii) the belief λk , and (iii) the degree of buyers’ rationality τ ,
to the price p∗

k , i.e., π∗
k : (c, λk, τ ) → p∗

k . To simplify notation, we also use p∗
k as

the function π∗
k in the remainder of the paper. Considering a known L0 strategy, p0,

the strategy of Lk agent is computed by iteratively best respond to lower levels of
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reasoning. To illustrate this, consider that Lk seller competes against one L(k − 1)
opponent seller. Then, the best response of Lk is given by:

p∗
k = argmax

pk
(pk − c)sk(〈pk, p∗

k−1〉),

where p∗
k−1 is the best response to p∗

k−2. Next, by taking into account the belief λk ,

p∗
k = argmax

pk

k−1∑

z=0

λz
k(pk − c)sk(〈pk, p∗

z 〉), (4)

is the best response of Lk seller with regards to the probability of meeting each of the
lower levels z. The Lk best response strategy presented here serves as an illustration
of the iterated best response model. In what follows, we derive an analytical solution
for the best response strategy of Lk for any number of opponents with regards to the
opponent prices.

4.1 Analytical Best Response and Rationality

Recall that p−i denotes the vector of prices set by sellers other than i . Here, we assume
a known p−i since prices of opponent sellers result out of iterated best response
strategies in k-level reasoning. We make no further assumptions for the private costs
of opponent sellers, note that ci is the private cost of seller i .

Theorem 1 The price p∗
i maximizes the utility of seller i given the vector of opponent

prices p−i , the private cost ci , and the degree of buyers’ rationality τ :

p∗
i (p−i , ci , τ ) = τW

⎛

⎝ e− ci
τ

−1

∑
j 
=i e− p j

τ

⎞

⎠ + ci + τ, (5)

where W is the Lambert function, i.e., x = f −1(xex ) = W (xex ) (Corless et al. 1996).

Proof Given seller i , and the vector of opponent prices p−i , the utility of seller i is
equal to:

ui = (pi − ci )
e−pi /τ

∑
j e−p j /τ

. (6)

To derive the price p∗
i , we first use the quotient rule to compute the derivative of the

utility of seller i in Eq. (6) with respect to the price pi :

∂ui

∂ pi
=

e− pi
τ

(∑
j 
=i e− p j

τ

( ci
τ

− pi
τ

+ 1
) + e− pi

τ

)

(∑
j e− p j

τ

)2 . (7)
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Equation (7) is the derivative of the utility of seller i with respect to the price pi . By
solving Eq. (7) to be equal to zero, we get Eq. (5). It can be shown that (∂ui/∂ pi ) > 0
for any pi < p∗

i and (∂ui/∂ pi ) < 0 for any pi > p∗
i . Hence, p∗

i is the price that
maximizes the function ui . ��
Theorem 1 shows the best response strategy of seller i with regards to the opponent
prices p−i , the private cost ci , and the degree of buyers’ rationality τ . The above
theorem is relevant for markets where prices are public knowledge, while the degree
of buyers’ rationality τ can be approximated.

We proceed to show some interesting theoretical results that follow fromTheorem 1
under the following assumption:

Assumption 1 We consider a Bertrand duopoly with a reasoning seller i with private
cost ci that observes: (i) the price of the opponent p−i , which we assume is fixed for
all τ , and (ii) the degree of buyers’ rationality τ .

Intuitively, the above assumption considers a duopoly market in which the opponent
seller can not observe or estimate the degree of buyers’ rationality τ and uses a fixed
price p−i . The competitive price p−i can also resemble the price of an outside option
for buyers, e.g., their private cost for producing the items on their own, that does
not depend on the degree of their rationality τ . In contrast, the reasoning seller can
observe the degree of buyers’ rationality, motivated by the example of a company with
resources for market research.

In the remainder of this section we abbreviate the notation of the best response
function in Eq. (5), p∗

i (p−i , ci , τ ), where possible. First, by using Eq. (5) we get the
following lemma:

Lemma 1 Given Assumption 1,

p∗
i < p−i ⇔ ci < p−i − 2τ. (8)

Proof We use the property of the Lambert function, W ( f (x)) = g(x) ⇔ f (x) =
g(x)eg(x), to solve the following inequality,

τW

(
e− ci

τ
−1

e− p−i
τ

)

+ ci + τ < p−i , (9)

which results in the inequality in Eq. (8). ��
The above lemma shows the upper bound for the private cost ci , such that the best
response strategy p∗

i is lower than the opponent price p−i , and thus buyers can benefit.
A less intuitive bound for the cost ci than in Eq. (8) can be computed for more than
one opponent prices.

We proceed to show that buyers benefit if they are not perfectly rational, i.e., τ > 0,
under the same setting.

Lemma 2 Given Assumption 1 and ci < p−i , there exists τ ∗ ∈ (0, (p−i − ci )/2),
such that p∗

i (τ ∗) ≤ p∗
i (τ ),∀τ ∈ (0,∞).
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Proof Given that the quantity (p−i − ci ) is fixed for all τ , and τ ′ = (p−i − ci )/2,
Eq. (8) implies that p∗

i < p−i for τ < τ ′.
Given that Eq. (5) is not defined for τ = 0, we compute the limit as τ tends to 0,

lim
τ→0

p∗
i = ci + lim

τ→0

[
τW

(
e

p−i −ci
τ

−1
)

+ τ
]
.

By the L’Hospital’s rule we get that limτ→0 p∗
i = ci + (p−i − ci ) = p−i . As τ → 0,

p∗
i tends to p−i .
Thus, for every ε > 0 sufficiently small, the continuous function p∗

i lies below p−i

for every τ that belongs to [ε, τ ′ − ε].
Given the extreme value theorem for continuous functions in compact intervals,

there is a τ ∗ ∈ [ε, τ ′ −ε] for which p∗
i (τ ∗) ≤ p∗

i (τ ), ∀τ ∈ [ε, τ ′ −ε]. In addition, we
know from Eq. (8) that limε→0 p∗

i (τ ′−ε) = p∗
i (τ ′) ≥ p−i , and limε→0 p∗

i (ε) = p−i .
By taking ε sufficiently small, and by infτ∈[ε,τ ′] p∗

i (τ ) ≤ infτ∈[τ ′,∞] p∗
i (τ ), we get

that p∗
i (τ ∗) ≤ p∗

i (τ ),∀τ ∈ (0,∞). ��
Theorem 2 Given Assumption 1 and ci < p−i , the optimal price of the reasoning
seller i , p∗

i , is minimum for a degree of buyers’ rationality τ ∗, with τ ∗ > 0, and thus
not for perfect rational buyers.

Proof It follows from Lemmas 1 and 2 . ��
Theorem 2 shows that the minimum price of the reasoning seller is obtained for a
degree of rationality τ > 0 (not perfect rationality).

In this section, we derived analytical results with regards to the best response price
of a reasoning seller, and the degree of buyers’ rationality that minimize the price of
the reasoning seller. We illustrate these results experimentally in the next section.

4.2 Duopoly Markets

In line with our assumptions in the previous section, we consider a duopoly market
where both sellers have identical private costs. We further use the standard assumption
of k-level reasoning, namely, a Lk seller believes to be competing against a L(k − 1)
opponent seller, and thus λz

k = 1 for z = (k −1) and λz
k = 0 for z < (k −1). To derive

the price of each Lk seller we use the iterated best response strategy of Lk similarly
to Eq. (4) and the analytical best response price as this was derived in Eq. (5). More
specifically, the price of Lk is given by: p∗

k (pk−1, ci , τ ), where we replace p−i in
Eq. (5) with pk−1, i.e., the price of the (k − 1) reasoning level. For the remainder of
this section, we use 3 levels of reasoning; while our results generalize to any number
of levels of reasoning, levels 0, 1 and 2 exemplify the cases of no, partial and (almost)
full information respectively. Note that, the number of possible strategies (levels of
reasoning) is distinct from the number of sellers. Furthermore, L0 is a naive strategy
that sells at an arbitrary fixed profitable price p0, i.e. for L0 seller i , p0 is larger than
the private cost ci .

Figure 1 (left) presents the best response strategy (price) of the 3 levels of reasoning
with regards to the logarithm of the degree of buyers’ rationality τ . All sellers have
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Fig. 1 (Left) Best response strategy (price) of reasoning level Lk with regards to log(τ ). (Right) Buyers’
cost with regards to log(τ )

identical private costs, c = 0.2, for L0 we use p0 = 0.6. Values on the horizontal
axis approximate different degrees of rationality from log(τ ) = −3 (almost perfect
rationality) to log(τ ) = 0 (almost random price selection). For log(τ ) = −3, the best
response strategy of Lk is marginally lower than the price of L(k − 1). Given that for
log(τ ) = −3, buyers are almost perfectly rational, a marginal decrease in the price
of Lk with regards to L(k − 1) results in Lk to attain almost the full market share.
As τ increases, the difference between prices becomes larger to counterbalance the
stochastic selection of buyers over different prices. Intuitively, sellers choose a lower
profit margin in order to achieve a higher market share.

For each reasoning level k for k > 0, there exists τ ∗
k for which the price p∗

k becomes
minimum. For instance, for k = 1 and k = 2, the degree of buyers’ rationality that
minimizes the price p∗

k is when log(τ ∗
k ) ≈ −1.3. For higher values of τ , buyers assign

more equal probabilities for selecting among different prices. Hence, sellers of varying
levels of reasoning achieve almost equal divisions of the market share that are only
slightly influenced by the prices, and thus prices inflate in face of maximizing profits.

4.2.1 Utility of Sellers and Buyers

We proceed to show the influence of the degree of buyers’ rationality τ on the cost for
buyers which we compute as in Eq. (3). Here, we use a uniform distribution for x , i.e.,
x0 = x1 = x2 (recall that x is the true distribution over levels of reasoning). Figure 1
(right) presents the cost for buyers with regards to logarithm of their collective degree
of rationality log(τ ). For log(τ ) = −3, the cost is marginally lower than the price p0,
however, it decreases further as τ becomes larger. For log(τ ) ≈ −1.3, the cost for the
buyers is minimum. As τ increases further, buyers choose randomly over prices and
thus the cost is increasing, since prices inflate.

The results presented throughout this section verify our theoretical findings for
the existence of a degree of rationality (not perfect rationality) for which prices of
reasoning sellers become minimum (see Theorem 2). To compute the cost for buyers
we have considered a uniform distribution over levels of reasoning x . In the following
section, we show that the distribution x can be influenced by the success rate of each
reasoning level Lk in repeated settings.
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5 Evolutionary Dynamics

Considering repeated interactions that take place in markets, the frequency with which
each strategy (i.e., reasoning level) appears in the population is influencedby its success
rate (i.e., fitness). In this section, we use evolutionary game theory (Smith and Price
1973; Weibull 1997), to study the evolutionary dynamics of reasoning levels in the
population of sellers.

Given the distribution over levels of reasoning x , the frequency change ẋ is given
by the replicator equation (Hofbauer 1985):

ẋk = xk [ fk(x) − ϕ(x)] . (10)

Recall that xk is the frequency that strategy Lk appears in the population, fk is the
fitness of Lk, and ϕ(x) is the average fitness of the population.

ϕ(x) =
∑

z

xz fz(x) (11)

We revisit the duopoly scenario of the previous section (see Sect. 4.2) to apply the
replicator equation. We compute the fitness fk for every possible duopoly as follows:

fk(x) =
K∑

z=0

xz(p∗
k − c)sk(< p∗

k , p∗
z >), (12)

where K is the highest reasoning level (here, K = 2). Figure 2 presents the replicator
dynamics for the duopoly model of Sect. 4.2. Arrows at each point of the simplex
show the derivative ẋ (direction and magnitude). We observe that evolution favors the
highest reasoning level L2, i.e., L2 has a competitive advantage.

We used the replicator equation to study the evolution over reasoning levels in
the duopoly scenario of Sect. 4.2, assuming that a Lk seller believes to be facing a
L(k − 1) opponent seller (standard assumption of k-level reasoning). We showed that
in such settings the highest reasoning level has always an evolutionary advantage since
the belief is not influenced by changes in the distribution x . In addition, this result
generalizes to any number of reasoning levels.

Fig. 2 Replicator dynamics over
levels of reasoning, for almost
perfect buyers’ rationality,
log(τ ) = −3. Arrows (direction
and magnitude) show the
derivative of x , ẋ

L0 L1

L2
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5.1 Dynamic Belief of Competition

In this section, we alter the standard assumption of k-level reasoning to a dynamic
belief model that is influenced by the distribution x .

We generalize our setting to consider an oligopoly market with n sellers, and iden-
tical private costs for sellers. We consider that the belief of a Lk seller with regards
to opponent levels of reasoning sellers is the real distribution x for all levels lower
than k, such that λk = 〈x0, x1, . . . , xk−1〉. Note that,

∑k−1
z=0 λz

k < 1, since xk > 0,
i.e., only lower than k levels of reasoning are included in the belief distribution of
Lk. In addition, for xk close to one (i.e., Lk dominates the population),

∑k−1
z=0 λz

k is

close to zero. We define xout = 1 − ∑k−1
z=0 λz

k as the probability of facing equal or
higher levels of reasoning opponents. The probability xout can only be computed for
k > 0, since L0 does not have a belief distribution. Hence, the belief of Lk becomes
λk = 〈x0, x1, . . . , xk−1, xout 〉. We interpret the probability xout as the probability of
competing with an unknown opponent, e.g., outside option for buyers. The opponent
price associated with the probability xout is denoted with pout . The price pout can
be set equal to the maximum price buyers are willing to pay to alleviate the risk of
extreme prices set by dominant strategies.

5.2 Optimal Pricing and Generalized Replicator Equation

We use Eq. (5) to approximate the price of each reasoning level p∗
k . Lk seller draws

samples (opponent price vectors p−i of length n − 1) with regards to its belief λk .
In our experiments, the Lk best response (optimal price for k-level of reasoning) is
averaged over 100 sampled opponent price vectors. More samples do not change the
behavior of the simulation in experiments presented later in this paper.

Furthermore, to model innovation of strategies in the population, i.e., new sellers
that enter competition or sellers that increase/decrease their level of reasoning, we use
the generalized replicator equation (Hofbauer and Sigmund 1998):

ẋk =
∑

z

[
xz fz(x)Qz→k

] − ϕ(x)xk, (13)

where Qz→k is the transition probability of an individual (from the population) from
Lz to Lk (i.e., mutation probability). The fitness of Lk, fk(x), is computed by:

fk(x) = 1

M

M∑

μ=1

(p∗
k − c)sk(〈p∗

k , p∗
z(1)
μ ∼x

, . . . , p∗
z(n−1)
μ ∼x

〉), (14)

where each z( j)
μ ∼ x are independent samples (i.e., n − 1 opponent prices) from

the true distribution over reasoning levels x , and the fitness is averaged out of M
sampled opponent price vectors. Considering that the population of sellers is finite, ẋ
is not deterministic for a given x , therefore computing the average fitness improves the
approximation (Kemenade et al. 1998). We use M = 100 for experiments presented
in the remainder of this paper.
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Fig. 3 Evolution of levels of
reasoning and price for almost
perfect rationality (top,
log(τ ) = −2.7), bounded
rationality (middle,
log(τ ) = −0.7), and random
behavior (bottom, log(τ ) = 0).
Stack plots at the top show the
evolution of distribution x , and
plots at the bottom illustrate the
prices set by different levels of
reasoning, the dashed line shows
the development of the cost for
the buyers
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5.2.1 Evolution of Reasoning Levels

Figure 3 illustrates the evolution over levels of reasoning and price with regards to
time t for c = 0.2, p0 = 0.9, pout = 1, and 10 levels of reasoning (from the lowest L0
to the highest L9, here K = 9). The initial distribution x0 is set to 〈1, 0, . . . , 0〉, only
L0 is present at time t = 0. The mutation probability is set to 0.01, where transition
probabilities are uniformly distributed over all different levels, i.e.,

∑
z 
=k Qk→z =

0.01/(number of levels − 1), and Qk→k = 0.99. Stack plots placed at the top show
the evolution of the distribution x over levels of reasoning, and plots at the bottom
show the price evolution for log(τ ) ∈ {−2.7,−0.7, 0}. The bold dashed line shows
the average cost for the buyers.

First, we discuss the case of almost perfect rationality, log(τ ) = −2.7 (see Fig. 3,
top). Given the positive mutation probability in Eq. (13), higher levels (L1 − K ) of
reasoning “invade” the population of L0. L K best responds to all lower levels of
reasoning, thus it increases its share in x . For t > 50, L K becomes dominant in the
population, at the same time the frequency of reasoning levels between L0 and L K
diminish in the distribution x . In addition, prices as well as the distribution x are not
stable, resulting in price spikes that lead prices higher than the price p0 (p0 = 0.9).
Both price spikes and the instability in the evolution of the distribution x are caused due
to: (i) the low probability for L K to compete with lower level of reasoning opponents
(
∑K−1

j=0 x j ≈ 0.2), and (ii) the high probability xout to face the outside option price
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pout . The level of price spikes is subject to the outside price pout , higher values for
pout result in higher spikes further away from the price p0. During price spikes, L0
benefits due to the high prices of (L1 − K ) and increases its share in x . Thereafter,
higher levels of reasoning (L1 − K ) decrease their price in face of the increasing
share of L0 in x until L0 share decreases again. This results in chaotic evolutionary
dynamics while similar behavior is observed for log(τ ) < −1.7.

We observe smoother evolutionary dynamics and lower average price for buyers
for lower degrees of buyers’ rationality, more specifically, for log(τ ) > −1.7. For
instance, for log(τ ) = −0.7 (see Fig. 3, middle), evolution reaches an equilibrium
state at t > 3k, where the distribution x and the prices become stable. On the contrary
to the case of almost perfect rationality (see Fig. 3, top), the prices set by higher levels
of reasoning (L1 − K ) are lower than p0 (p0 = 0.9), and thus the average cost for
the buyers decrease. Note that, the frequency of reasoning levels between L0 and L K
is not diminished as in the case of almost perfect rationality. The lower average price
for buyers is a result of sustaining competition between different levels of reasoning
sellers and the smoother dynamics of the evolution.

Last, we show the evolution of the distribution x and the prices when the buyers’
price selection is almost random (see Fig. 3, bottom). For log(τ ) = 0, reasoning levels
(L1− K ) share the distribution x equally, where all reasoning sellers offer prices that
exceed the price of L0, p0, and the price pout , and therefore increase the cost for buyers.

Overall, higher degrees of buyers’ rationality yield higher average cost for buyers
than lower degrees of rationality, e.g., log(τ ) = −0.7. Furthermore, unstable evolu-
tionary dynamics under almost perfect rationality increase prices further due to price
spikes. In our experiments, we additionally used gradual updates to the prices in order
to study the possibility more stable states can be reached in the evolution even in the
case of perfect rationality. When gradual updates were used, results were consistent
to the results presented here, however, the evolution of the distribution x was slower.

5.2.2 Competitive Advantage and Price

We proceed to show how the degree of buyers’ rationality affects the competition in
terms of the evolutionary advantage of higher reasoning levels, the resulting prices for
buyers, and the stability of the competition.

Figure 4 (left) illustrates the distribution x over levels of reasoning after 10k steps
(mean of the last 100 steps) of the evolution averaged over 20 independent runs. L K is
the dominant in x for almost all values of τ , i.e., log(τ ) < − 0.25. For log(τ ) ≈ − 0.25,
all levels L0 to L K have approximately equal shares in x . This is due to the almost
equal prices reasoning levels set (similarly to the duopoly setting examined in earlier
sections, see Fig. 1, left). For log(τ ) > − 0.25, the market is shared among levels L1
and L K , since all levels of reasoning but L0 offer very high prices to (almost) random
buyers.

We further show the effect of varying degrees of rationality τ on buyers’ cost (see
Fig. 4, right). The cost is averaged over the last 100 out of 10k steps of evolution
and over 20 independent evolution runs. For low τ , the average cost for buyers is
marginally higher than the cost without the presence of higher than L0 reasoning
levels, p0 = 0.9. This is the result of unstable competition dynamics that cause price
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Fig. 4 (Left) Distribution of reasoning levels x , (right) buyers’ cost. Results are computed for 10k steps of
evolution and 20 independent evolution runs

spikes, during which prices become higher than the price of L0 strategy, p0. Recall,
that pout = 1 alleviates the possibility of extreme prices, and thus the cost for buyers
would increase further for higher pout due to the increasing level of price spikes. In
contrast, from log(τ ) = − 1.7 to log(τ ) = − 0.2 buyers’ cost drops below the price
p0 = 0.9, this is mainly caused by the smoother behavior of evolution that converges
to stable distributions and alleviate price spikes. In line with our theoretical findings in
Sect. 4, we observe that there is a degree of rationality log(τ ∗) ≈ − 0.7 that minimizes
the average cost for buyers (shown in the figure by the dashed vertical line).

In the presented experiments, we demonstrated that lower degrees than almost per-
fect buyers’ rationality decrease the prices sellers offer to buyers during the evolution
of the competition. For almost perfect buyers’ rationality, the highest reasoning level
sellers exploit instances of monopoly situations and increase their prices, while under
bounded buyers’ rationality competition is sustained decreasing prices for buyers. In
the section that follows, we evaluate the stability of the competition with regards to
the degree of buyers’ rationality.

5.2.3 Asymptotic Behavior of the Competition

If the dynamics were known in explicit closed form, one could apply analytical notions
of stability (e.g., evolutionary stable strategies, asymptotically stable) to analyze equi-
librium strategies (Smith 1972). However, given our implicit dynamics arising from
system simulation (see Sect. 5.2), we need to draw on empirical means for charac-
terizing the asymptotic behavior of the evolution. In the remainder of this section we
analyze both the first-order derivative and the distribution trajectory x , and examine
how the degree of buyers’ rationality influences the stability of the evolution.

First, we use the average magnitude (Euclidean norm) of the derivative of x , |ẋ |,
that is shown by the solid line in Fig. 5 (left vertical axis). We compute |ẋ | over the last
100 out of 10k steps of the evolution while results are averaged over 20 independent
runs. The quantity |ẋ | is maximum for almost perfect buyers’ rationality, specifically,
|ẋ | > 10−3, ∀ log(τ ) < −2. This is in line with our observations in Fig. 3 (top),
where we showed chaotic behavior in the evolution of x for a low τ value. As τ

increases, steps in the evolution become smaller and consequently |ẋ | decreases. For
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Fig. 6 (Left) Optimal degrees of buyers’ rationality τ∗ with regards to the price of L0, p0. (Right) Buyers’
cost when τ = τ∗ with regards to the price of L0, p0. Results are shown for t = 10k for 20 independent
runs

log(τ ∗) ≈ −0.7, which minimizes the average cost for buyers in Fig. 4 (right), |ẋ | is
very low (10−5).

Next, we use the Euclidean distance between x and the average distribution x̄ ,
|x − x̄ |, which is shown by the dashed line in Fig. 5 (right vertical axis). The quantities
x̄ and |x − x̄ | are computed over the last 100 out of 10k steps of evolution, and averaged
over 20 independent runs. Similarly to |ẋ |, |x − x̄ | decreases as τ increases, and hence
the distribution x stays closer to the average distribution x̄ for bounded rational buyers.

Our results suggest that imperfect rationality contributes to smoother competition
dynamics, corroborating our observations in Sect. 5.2.1.

5.2.4 Strategy of Zero Reasoning Level

So far we have shown the effects of different degrees of buyers’ rationality on the
behavior of retail markets with regards to: the evolution of competition, the resulting
prices for buyers, and the stability of evolutionary dynamics. Here, we show that the
properties shown in previous sections generalize for different prices of L0 strategy,
p0. Figure 6 illustrates both the degree of rationality log(τ ∗) that minimizes the cost
for buyers (left), and the corresponding cost for the values of log(τ ∗) (right). The
cost for buyers is minimum if buyers are not perfectly rational for all values of p0,
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however as the difference (p0 − c) becomes larger, log(τ ∗) increases (lower degree of
rationality). At the same time, buyers’ cost is relatively lower than p0 as p0 increases.
Intuitively, the margin between the resulting average cost for buyers (computed for
the optimal degree of buyers’ rationality) and the price p0 increase as the difference
(p0 − c) increase.

6 Discussion and FutureWork

In this work, we illustrated the effects of varying the degree of buyers’ rationality in
retail markets. In the presented experiments, we showed that almost perfect rationality
caused spikes in price due to the unstable evolutionary dynamics, and thus increased
the cost for buyers. On the contrary, lower degrees of rationality resulted in lower
cost for buyers, by both sustaining competition between sellers of varying levels of
reasoning and by increasing the stability of evolutionary dynamics. In line with related
work (Wunder et al. 2010b), we can also conclude that using a stochastic choice model
for decision-making in our setting leads in higher payoffs for the buyers.

Arriving at this non-trivial conclusion, we have made some simplifying assump-
tions with regards to the market setting and the model of competition between sellers.
On the contrary, real-world retail markets involve highly perplexing dynamics and
demonstrate extremely complex behavior, which can not be fully delineated in funda-
mental market models. Our results are thus not conclusive but instead seek to provide
insights and add fundamental knowledge that can be used for the design of future retail
markets with commodities that enable market participation by software agents, and
general competitive multi-agent settings with heterogeneous agents.

This work further serves as a basis for a number of extensions. First, we have
considered the collective behavior of buyers and showed some favourable properties
of the competition for lower than perfect degrees of buyers’ collective rationality.
However, ifwe consider an individual buyer, it is always optimal to be perfectly rational
given a set of prices. It is of interest to study the connection between individual and
collective buyers’ rationality. Second, throughout this paper we have assumed that
there is no cost associated with the reasoning level of sellers. In the same settings we
can consider arbitrary cost models for each reasoning level, or compute bounds up to
which it is beneficial for sellers of higher levels of reasoning to enter the competition.
Last, more elaborate market models and finite population replicator dynamics (Taylor
et al. 2004) can be considered by future work.

7 Conclusion

In this work, we studied the effects of varying degrees of buyers’ rationality and
sellers’ opponent modeling (using k-level reasoning), in the Bertrand competition. In
Theorem 1, wemathematically derived the best response strategy (price) given a set of
opponent prices and the degree of buyers’ rationality. We used evolutionary dynam-
ics to show the evolution of competition and prices in both duopoly and oligopoly
scenarios. By replacing the standard assumption of k-level reasoning with a dynamic
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belief that depends on the distribution over reasoning levels, we showed that perfect
rationality results in monopolistic behavior of higher reasoning level sellers, spikes
in price, and unstable competition dynamics. The existence of an optimal degree of
rationality stated in Theorem 2 and the improved evolutionary dynamics illustrated in
our experiments thus provide a rationale for agents’ bounded rationality in retail mar-
kets, raising the need to revisit design objectives for software agents in retail markets
in light of their wider systematic impact.
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