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“Evolve solutions; when you find a good one, don’t stop.”

David Eagleman, Incognito: The Secret Lives of the Brain
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Abstract

Evolution of Soft Robots by

Novelty Search

by Georgios Methenitis

Soft robotics is a vivid research field on the science and engineering aspects of soft mate-

rials in mobile machines. Recent development in soft robotics and evolutionary optimiza-

tion have shown the ability to simultaneously evolve the morphology and locomotion of

soft robots. Generative encoding coupled with neural evolution of augmented topologies

shows promising results. Novelty search, unlike traditional optimization methods does

not aim to optimize the objective but instead looks for novelty. Novelty search rewards

diversity and leads to a variety of solutions, mimicking natural evolution. Apart from

the performance comparison between novelty and fitness based search, this thesis shows

that new locomotion patterns can be produced by the former while different types of

selection algorithms for fitness and novelty based evolution are studied. In addition, a

method to combine both is proposed. Finally, the objective-wise performance is tested

under variant gravity conditions leading into a taxonomy of possible locomotion strate-

gies given different gravity levels.
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Chapter 1

Introduction

Soft robotics is a field of research inspired by soft bodied organisms, where engineering

and designing aspects of soft structures are the center of interest. Soft robotics can

make the interaction between robots and living organisms safe. In addition, soft robots

have the potential to function in more natural and complex environments, where rigid

robots have disadvantages due to their solid parts. Actuated soft materials, that react to

environmental changes add complexity to the design-phase, since the infinite degrees of

freedom of soft structures and the possible distributions of materials, make the number of

possible designs vast. Therefore, it is certain that designers and engineers, being inspired

by nature will stick with a subset of designs, while there will never be enough exploration

to the design space, since the approach of such deep design spaces by humans, is a heavy

task.

Evolutionary methods can approach such design optimization problem tasks. Solu-

tions, in this case designs, can be represented into the machine with some forms of

encoding. Encoding is an essential part of every evolutionary method. Generative

encoding has shown promising results especially in specific problem domains, such as

evolving controllers for robot gait and morphology evolution. Direct encoding provides a

straightforward mapping from genotype to phenotype level; Generative (indirect) encod-

ing determines a set of rules, functions that can be queried and generate each individual

solution in the space of the phenotype. Recent work (Cheney et al., 2013) has proved

that evolutionary methods coupled with a generative encoding genotype representation

can evolve both the morphology and the locomotion behavior of soft robotics in a virtual

simulation environment.

Traditional evolutionary methods in pursuance of the objective function defined by algo-

rithm designers, are unable to generate enough diversity within the population driving

the evolution towards local optima. Novelty search, unlike traditional optimization

1
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Figure 1.1: Different types of morphologies capable of efficient locomotion evolved
within novelty and traditional fitness based search.

methods, does not aim to optimize individuals towards an objective. Novelty search

rewards diversity and leads to a boundless variety of solutions, mimicking natural evo-

lution. Doing so, novelty search has proven to be a successful method for searching vast

spaces where the objective function is deceptive.

Having said about the limitless morphology solutions soft robots can have, it is of interest

to investigate kinds of solutions an evolutionary method will evolve. Different environ-

mental variables, such as gravity acceleration, can be decisive as far as the evolved

morphologies are concerned. The morphologies as well as the locomotion behaviors that

evolved soft robots will acquire during the evolution is a major research question of this

thesis, as it can lead to a taxonomy of different morphologies and locomotion strategies

for variant environmental conditions. Figure 1.1 illustrates four soft body virtual crea-

tures evolved to locomote under the simulated environment. A variety of morphologies

evolved can generate highly efficient locomotion strategies.

1.1 Thesis Contribution

This thesis explores possible ways of evolving the morphology and the locomotion strat-

egy of soft structures in a virtual simulation environment. A random morphology gener-

ator is created as a simplistic approach to design soft robots in the specific environment,
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resulting in inefficient locomotion ability of the designed structures. The idea of direct

and indirect encoding is used in this random framework, to show that a function is

a better way to generate morphologies than assigning random shapes to soft robots.

Symmetry property is also used in the indirect approach, resulting in more efficient lo-

comotion. An initial experiment is performed to confirm that these problems cannot be

captured by a simple genetic method with direct encoding representation of the geno-

type. To establish a baseline, generative encoding scheme is paired with an evolutionary

algorithm to support the claim of previous work (Cheney et al., 2013) that a generative

representation can be beneficial in this optimization setting. For the first time novelty

search a diversity based method is used for the evolution of the morphology and the

locomotion of virtual soft robotics. This thesis is exploring the effect that diversity

based search can have on the performance of the locomotion that evolved morphologies

achieve. Additionally, it is expected that the diversity of morphologies will be increased

under the same settings. Morphologies and locomotion strategies evolved by novelty

search show that not only same or better performance can be achieved through this

method but also the diversity of behaviors is remarkably increased. A lot of aspects of

novelty search are investigated, in an attempt to understand for what reason a diversity

based method is performing better than traditional ways of optimization such as fit-

ness based search. An alternative way of selection known as competition is successfully

applied to research ways of improving both search techniques. Another contribution

of this thesis is a proposed method of incorporating fitness information within novelty

search achieving in a considerable improvement to the effectiveness of evolved locomo-

tion strategies. Last, both search methods are used to evolve structures for a variety

of gravity levels, expecting to show a different taxonomy of locomotion patterns under

different conditions. The effect of gravity in the locomotion velocity of mobile machines

is also studied.

1.2 Thesis Outline

Chapter 1 introduces the problem domain this thesis investigates and defines the re-

search questions answered in this work. Chapter 2 provides an introduction to genetic

algorithms, different encoding techniques for the genotype representation, neuroevolu-

tion algorithms and objective driven search are presented and compared to a diversity

based technique, known as novelty search. It also provides insights on the field of soft

robotics and some of its applications. In Chapter 3 related material about evolutionary

techniques used to evolve artificial life, as well as the evolution of soft robots morphology

and locomotion are presented. Chapter 4 is a comprehensive documentation present-

ing details of the implementation of different evolutionary techniques used. Chapter 5
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gives a detailed presentation of the results achieved under different experimental setups.

Chapter 6 serves as an epilogue to this thesis where the impacts of the contributions are

discussed. In addition, future extensions of this work are provided.



Chapter 2

Background

This chapter gives an overview of the state-of-the-art methods in evolutionary algo-

rithms. It gives an in-depth discussion about the intersection of evolutionary algorithms

and robotics. This discussion focuses mostly on how evolutionary methods are used

to evolve robot designs and controllers for some applications. In addition, genetic algo-

rithms, the role of the encoding in the representation within an evolutionary setting, how

artificial neural networks (ANNs) can represent an organism in evolutionary algorithms

(EAs), and how these ANNs can be evolved when coupled with an EA are presented. As

part of the different encoding schemes, an indirect coding called compositional pattern-

producing networks is also discussed in detail. Additionally, the aspect of the objective

function in such evolutionary problems and the effect it has on the performance of the

methods is studied. Furthermore, novelty search, a method which uses an objective

function that rewards diversity in the evolution is presented in detail. Last but not

least, the field of soft robotics is introduced, in conjunction with ways where these soft

material structures can be evolved and simulated in virtual simulation environments.

Soft robots, designed for real life applications are also presented.

2.1 Evolutionary Algorithms

Evolutionary algorithms (EA) are a part of the evolutionary computation field where

generic population-based optimization algorithms are studied. Initially, an evolutionary

process holds a fixed number of solutions which are randomly generated. These can-

didate solutions are propagated within generations until a good solution is found or a

maximum number of iterations has passed. One of the most important advantages of

EAs is that they can approximate good solutions in very complex optimization problems,

5
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where analytic methods cannot be applied. The non-deterministic nature of evolution-

ary algorithms starting with candidate solutions randomly sampled from the solution

space does not guarantee that the evolution will always come up with the same results

on independent runs. Another important fact of EAs is that holding a population of

solutions can help avoid being “trapped” in local optima of a specific function. The way

EAs propagate from one generation to the other is simply by using all or part of the

current candidate solutions to produce the next generation. In evolutionary algorithms,

the objective function is the measure that all solutions are evaluated against in order to

reach the ultimate goal of the optimization problem.

2.1.1 Genetic Algorithms

Genetic algorithms are part of the evolutionary algorithms following the same principles.

“Genetic algorithms are probabilistic search procedures designed to work on

large problem spaces involving states that can be represented by strings.”

Considering the above quote (Goldberg and Holland, 1988) a genetic algorithm is a pro-

cess of evolving a string-stream of values, which is a single solution in a high dimensional

problem space. These values can be at their simplest form bits (0, 1), integers, floats or

char values.

Each of these candidate solutions is called a phenotype and the stream from which the

solution is derived, genotype or chromosome. Each generation holds a population of a

fixed number of individuals which are initially randomly selected out of a distribution

over the solution space. The iterative process that follows and creates a new population

of individuals, given the current population, is called generation. Usually the algorithm

terminates after a fixed number of generations or when the goal has been reached.

The way the next generation’s population is produced depends on the current popula-

tion; Genotypes are selected to breed new individuals. There are two basic ways for a

new genotype to be produced. The first way is called mutation and requires only one

individual from the current population. Mutation will change one or more values in the

chromosome of the selected individual to create a new one and maintain the genetic di-

versity from one generation to the other. Crossover is the second basic genetic operator

and requires two or more parents for each new individual. This operator is similar to

biological crossover and it uses parts from all parents to create a new chromosome.

The way individuals are selected after each successful generation in order to produce

new individuals belongs to the genetic process of selection. Selection as the name reveals
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Figure 2.1: Basic pipeline of an evolutionary method.

itself selects which individuals will become parents and which individuals will not. The

selection criteria as it also happens in some natural environments where the fittest

organisms survive is a function that can approximate the goodness of a given solution.

This objective function, also called fitness, is a measure of how good an individual is,

i.e. total displacement of a robot’s body while trying to evolve walking. With the

knowledge of the fitness function added to the evolution, weak individuals are most of

the times discarded from the breeding process. Selecting parents randomly from the top

part of the population or selecting parents via tournament, are two of the basic selection

methods in evolutionary algorithms. The former ensures that only a small part (i.e

top 20% (survival threshold)) of the current population will survive. In the contrary,

tournament selection also known as Competition, allows the whole population to breed,

while it randomly picks a fixed number of individuals selecting the best among those.

A third way of choosing individuals for the next generation is called Elitism. Elitism is

a genetic selection technique. When used, it is responsible for copying a mutation or an

actual copy of the best individual of the current generation to the next. It ensures that

during the evolution successful solutions will carry on living and share their “valuable”

genes into the next generations.

Figure 2.1 illustrates the general algorithmic pipeline of an evolutionary method, as de-

scribed above. This starts with a random initialized population which is then evaluated

(size refers to how “good” each individual is). All individuals are then sorted based on

their goodness in respect the objective function. The selection process follows, where a

set of the best individuals is selected to produce the next generation. Elitism, alongside

crossover and mutation are used to this proportion of the population. The next gener-

ation will also be evaluated in respect to the same objective function and the iterative

process will continue.
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2.2 Evolutionary Robotics

Evolutionary robotics (Nolfi and Floreano, 2001) (ER) is a method that makes use

of evolutionary computation algorithms to evolve the control and/or the morphology,

without the direct design by engineers. Most research concentrates on developing robot

controllers for simulated or real robots (Harvey et al., 1997; Nolfi et al., 1994). One big

advantage of this method is that it can evolve solutions for environments that designers

and engineers do not have enough knowledge about (i.e., designing a robot controller for

another planet, where surface type and gravity level might be crucial variables for the

design of an exploring robot). In the same fashion as natural evolution, evolutionary

techniques work with a population of random initialized controllers or designs. The can-

didate population individuals (robot controllers) used in ER applications may be drawn

from some subset of the set of artificial neural networks (ANNs), whereas simpler ver-

sions of genetic algorithm applications use bit-streams that directly map the controller.

The controllers in the best performing robots are then selected, altered and propagated

through mutation, crossover, and other genetic operations, in a repeating process that

mimics natural evolution. Evolutionary robotics is done with many different objectives,

often at the same time. These include creating useful controllers for real-world robot

tasks, reproducing biological phenomena, etc.. Creating controllers via artificial evolu-

tion requires a large number of evaluations of a large population. This usually takes a

lot of computational time, which is one of the reasons why evolution of such controllers

is usually evaluated within a simulation software. Initial random controllers may exhibit

potentially harmful behavior, such as repeatedly crashing the robot into a wall, which

may damage a physical robot.

Apart from evolutionary methods to develop robot controllers reinforcement learn-

ing (Hayes and Demiris, 1994; Mahadevan and Connell, 1992) can be used rewarding

actions, resulting to state-action pairs that lead to high rewarding behaviors. As a re-

sult, a robot controller can be indirectly built. Applying evolved robot controllers to real

robots in a physical environment is an extremely difficult task, since simulators in front

of the limitations of computing efficiency sacrifice the accuracy (Jakobi et al., 1995). As

mentioned earlier, evolutionary methods can be used to design the physical structure

(morphology) of a robot (Hiller and Lipson, 2010), in addition to or in place of the

controller. This thesis is exploring this aspect of evolution, the simultaneous evolution

of the morphology and the locomotion of virtual soft robots.

Developmental robotics (Lungarella et al., 2003; Asada et al., 2001; Weng, 2004; Asada

et al., 2009) is a field related to evolutionary robotics, while instead of evolving through

generations towards fitter controllers, it is trying to mimic life-like learning starting
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Figure 2.2: Comparison of direct encoding versus generative for the binary image
example.

from a “blank” state in which the robot’s “brain” is initialized and every variable of the

environment is unknown.

2.3 Direct-Indirect Encoding of the Genotype

A simple direct encoding was described in the previous section, when a single dimension

stream of bits or numbers described the chromosome. When the dimensions of the

task define the length of the genome, we refer to direct encoding, which means that the

genotype-phenotype mapping is a straightforward function. An example of this encoding

could be the design of a two dimensional binary image. In direct encoding the genotype

of this picture can be represented by a stream of bits which has the same length as the

number of pixels of the image. In other cases, where there is no direct mapping between

the genotype and the phenotype, indirect encoding is present, where a set of rules or a

function maps the genotype to the phenotype space. In cases the phenotype space can be

represented by a Cartesian n-dimensional space, an indirect encoded chromosome can be

a function that is queried for each coordinate in a specific resolution and represents the

phenotype. For the same binary image example, indirect encoding would be a function

that gives pixel values 0 or 1 for every pixel’s coordinate.

Figure 2.2 illustrates the difference between direct and indirect encoding. An example

binary image is shown for both encoding schemes, in the first case (direct encoding) the

genotype is a binary stream which length is equal to the number of pixels producing the

value of each pixel directly. The latter encoding uses a genome of length 3, as many as

the coefficients of the linear combination in the following function:

f(x, y) = c1sin(x) + c2cos(x) + c3tan(y)

the result is taken after applying the same function for each pixel coordinate. Even

in cases where a simple function is used, the phenotype holds some of its functions
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Figure 2.3: Compositional pattern-producing networks have identical network struc-
ture with artificial neural networks while they make use of a canonical set of activation
functions.

properties such as symmetry and repetition, resulting in a pattern that direct encoding

cannot produce.

A method that can represent more complex functions and is widely used to indirectly

map the genotype to the phenotype space is the artificial neural networks. Artificial neu-

ral networks (ANNs) are computational models which are inspired by living-organisms

central neural system (Brain). These models are used to approximate functions that are

generally unknown, using a set of nodes and connections between pairs of nodes. Each

connection within the network holds a weight which used as a multiplicative factor of

each signal passing through the connection. Nodes are then responsible of propagating

the summation of the signal received from the connections by a Sigmoid function. This

interconnected set of nodes can propagate the inputs fed into the network to one or more

output nodes, approximating in this way a complex non-linear function.

2.3.1 Compositional Pattern-Producing Networks

Encoding plays an important role and it is critical to the performance of evolutionary al-

gorithms especially when large problem spaces are present. Research has shown that the

genotype-phenotype mapping can affect performance (Komosiński and Rotaru-Varga,

2001) in three dimensional agents, where more complex encoding schemes outperform

direct encoding. In addition, geometrical implications of the problem also have some

potentially important roles in the encoding. The role of symmetry to the encoding is

crucial especially in applications like board games, robot controllers, biped walking, etc..

In these cases, geometric regularities of the encoding can be essential to the performance

of the evolutionary method.

Compositional pattern-producing networks (Stanley, 2007) or CPPNs are artificial neural

networks with an extended set of activation functions (see Fig. 2.3). Results by this

encoding show that regular patterns can be produced in this generative mapping from
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Figure 2.4: CPPNs work as a function f that is being queried for the whole n-
dimensional Cartesian space in which space the phenotype is mapped, in this case the
phenotype is the triangle in a two-dimensional space, figure taken by (Stanley, 2007).

the genotype to the phenotype space. Like in the previous two dimensional image

representation of a phenotype, CPPNs generate phenotypes that can be interpreted as

distributions of points in a multidimensional Cartesian space. The genotype (CPPN) can

then be queried for each coordinate of the space and gives the phenotype representation

of the genotype in multiple resolutions. In the same fashion, images can be constructed

using CPPNs, where pixel coordinates are queried to the network and the grayscale or

RGB values can be taken by the outputs of these networks.

Figure 2.4 illustrates how the mapping between the genotype and phenotype is done

using generative encoding (CPPNs). A major asset of CPPNs is that they can generalize

in all resolutions. Considering the previous figure (see Fig. 2.4), the CPPN is queried

for all x, y coordinates of the phenotype two dimensional Cartesian space. The step of

x, y sampling can be determined by the problem, since the inputs of the CPPN are the

normalized coordinates x, y ∈ [−1, 1]. Hence, genotypes using this kind of generative

encoding can be mapped in every resolution, making this process straighforward to

generalize. As the space of the phenotype becomes larger, a generative encoded solution

(CPPN) is not affected by the increasing dimensions of the problem, a constraint that

heavily affects direct encoding.

Compositional pattern-producing networks have been used in many applications where

symmetry and repetition can produce two or three dimensional artistic structures2,

and drawings1 (Secretan et al., 2008). As these applications require more symmetrical

properties than others, not only Cartesian space coordinates are fed into the inputs of

these networks, but more inputs biasing the network should be present (Secretan et al.,

2008). Some example inputs that can be fed into the network as additional inputs are

the distance from the center of the space or the distance from the center to one axis.

Figure 2.5 illustrates images encoded by CPPNs. Comparing the results with Figure 2.2,

1picbreederSite: http://www.picbreeder.org
2EndlessForms: http://www.endlessforms.com

http://www.picbreeder.org
http://www.endlessforms.com
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Figure 2.5: Compositional pattern-producing networks can encode truly complex
images1 (top) and 3D-structures2 (bottom).

it is understandable why this kind of encoding can capture solutions in problem domains

where symmetry is important.

2.4 Neuroevolution

Neuroevolution (Yao and Liu, 1997) is an optimization technique using evolutionary

methods as described in Section 2.2, where artificial neural networks take the place of

simpler encoding methods. ANNs can compute arbitrarily complex functions, learn and

perform under the presence of noisy inputs and generalize to unseen sensory information.

Neuroevolution requires only a measure of a network’s performance at a task, which can

be used as the reward for good solutions (ANNs) to survive. More complicated forms

of chromosome representations can develop more complex robot controllers. After each

run, the sensory input of the task domain is given at the artificial neural network’s input

neurons and the solution is given by the output of the networks where the fitness of the

specific brain can be evaluated. A major issue is the selection of the network’s topology.

Topology is the arrangement of the network’s elements such as links and nodes, which

represents the structure and how the information flows within the network. In early

neuroevolution methods the topology of the networks used was fixed, meaning that the

only elements of the networks evolving were the weights of the connections between the

nodes. In modern neuroevolution methods, the topology of the networks is also subject

to the evolution.
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Figure 2.6: Robot controllers can be evolved through neuroevolution algorithms where
robot sensors are the inputs of neural networks while the outputs directly control the
robot.

2.4.1 Neuroevolution of Augmented Topologies

Neuroevolution of augmented topologies (NEAT) as it was first introduced by (Stanley

and Miikkulainen, 2002) is also a neuroevolution method used to evolve artificial neural

networks. A major advantage of this method is that alongside the weights it also evolves

the topologies of the networks within the population.

Originally, neuroevolution methods were developed to capture difficult sequential deci-

sion making, as well as to control problems. The sensory information is the input of

these neural networks and decisions are the outputs. NEAT is yet another method for

evolving ANNs where a few extra features are added, enables finding solutions in more

demanding problems. NEAT starts the evolution process with a population of networks

with simple topologies. Through the generations instead of just fixing the weights of

the networks’ connections, topologies are becoming more complex allowing nodes and

links to be added. Meaning that during the evolution, more complicated networks will

be produced, this complexifying technique leads to capturing more demanding solutions

as it offers enough freedom to the evolution.

Figure 2.6 illustrates how sensory information can be given as input to a neural network.

The neural network, given the sensory information provided, controls the robot which

tries to drive itself close to a target position in a maze. The outputs of the network

completely control the motion of the robot. All the sensory information (six sonar

sensors which output the distance from the closest obstacle in six directions and 4 pie-

slice radar sensors which are only activated when the target position is located within

the range of each one covers) is available to the controller.

Several aspects of this method worth mentioning where speciation is one of the most

important. Speciation is the procedure that protects new species until they have enough

time to evolve before comparing them with the rest of the population. For two individual
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genotypes (ANNs) to belong to the same species their network topology must be similar,

meaning that a threshold is set and a function determines the numeric value of two

network topologies’ similarity. Two different genotypes (ANNs) can share shame genes

(topologies within the network) and their compatibility (genotype similarity) is given

by:

δ = c1
E

N
+ c2

D

N
+ c3W̄ (2.1)

where E is the number of Excess genes (genes that do not match and they do not occur in

parents’ genotype), D is the number of Disjoint genes (genes that do not match but they

occur in parents’ genotype), W̄ is the average weight difference between Matching genes

(Identical) and N is the number of genes in the larger genotype used for normalization.

The age of each species protects them for competing in equal terms with more optimized

species, giving them in this way time to evolve further towards the objective function.

2.5 CPPN-NEAT

Compositional pattern-producing networks as described earlier in this chapter (see Sec.

2.3.1) are similar computational methods to ANNs in regards to their structure, so

one can make use of the complexifying property to capture in this way more complex

solutions (behaviors). NEAT method can evolve CPPNs in the place of ANNs, since it

only needs few modifications.

The resulted method that evolves this generative type of genomes (CPPNs) is called

CPPN-NEAT (Stanley, 2007) and its only difference in respect to the original NEAT

algorithm is the way new nodes are added to the network. The original NEAT algorithm

evolves ANNs which are using sigmoid functions at every node, so every new node will

carry this function. In the contrary, CPPNs use a variety of functions from a canonical

set. CPPN-NEAT assigns a random function from this set to every newly added node.

Experiments (Stanley, 2007) have shown that this method can indeed evolve CPPNs

capturing in this way solutions in problems with geometrical properties (i.e board games,

biped walking, etc.). NEAT is holding the properties of natural evolution as every

neuroevolution method. Furthermore, NEAT coupled CPPN encoding can be used to

determine the connectivity (topology) of artificial neural networks in a method called

HyperNEAT (Stanley et al., 2009).
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(a) Easy (b) Hard

Figure 2.7: An objective function can be devious. Maze examples from (Lehman and
Stanley, 2011a).

2.6 Novelty Search

Traditional search within the framework of evolutionary algorithms needs an objective

function, a function that guides the search towards “good” areas of the solution space

following the gradient of the fitness. Defining the fitness function is a straightforward

problem most of the time. In a problem where a robot tries to get to a target from its

initial position in a room with no obstacles in between a fitness function could be defined

as the Euclidean distance between the final position of the robot and the target point,

the closer it gets to the target the more points (higher fitness) the specific controller is

rewarded.

When the objective function misleads the search

An objective function as the one described above is greedy, driving the search directly

towards highly rewarding areas of the solution space. In cases that local optima can be

found in the landscape of the objective function this greedy fitness measure can drive

and trap the evolution in these localities of the problem.

Considering the robot-maze example presented in (Lehman and Stanley, 2011a, 2010), a

robot (blue dot) is placed in a maze (see Fig. 2.7), the robot (see Fig. 2.6) has multiple

sensory information which are fed as inputs to its controller (“brain”). The controller

is driving the robot through the maze having only sonar and radar sensory information,

while its ultimate goal is to drive the robot to the target position (green dot) in a fixed

time span. Naturally, to select a fitness function that can give enough information about

how good a controller is the Euclidean distance from the final position of the robot to

the target position is measured in the end of the simulation time. For the first maze (see

Fig. 2.7a) when no obstacles are between the robot and its target the objective function

is reliable, since the Euclidean distance to the target indeed informs the robot how close
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(a) Visited space after 200
generations.

(b) Visited space after 1000
generations.

Figure 2.8: Fitness search has no problems to find the solution in the easy map, while
it can not find the optimal solution in the hard setting after 250.000 evaluations.

it is located. In the second maze (see Fig. 2.7b) using the same fitness function search

can be mislead. In this example maze achieving high fitness does not mean that the

robot is actually close to the target. Driving north in this maze following the increasing

fitness leads to a wall that cannot be passed by the robot. Therefore, exploration is

needed in low fitness areas which will allow the robot to reach the target point with

the maximum fitness. The deceptive nature of the fitness function in this problem can

be found in a lot of optimization problems, while the walls in this maze clearly denote

problems where this fitness landscape can be found.

To visualize how fitness based search can fail in such a setting Figure 2.8 presents the

results of the above experiment explained using the robot sensory information presented

in Figure 2.6. NEAT algorithm is used to evolve the neural controller presented in the

same figure. The settings used for this experiment were the same as in (Lehman and

Stanley, 2011a) where a population of 250 individual controllers per generation was used.

As it was expected, fitness based search was successful in the easy setting (see Fig. 2.8a).

However, it failed to find the optimal solution in the hard map (see Fig. 2.8b) focusing

on creating controllers that lead the robots drive north until the wall was reached, failing

to explore the map extensively.

Natural evolution is not an evolution towards fitness

Using an objective function in evolutionary computation and typically reward individuals

which are closer to an objective is far away from natural selection in the evolution

process, where exploration is allowed as long as the criteria for survival hold (Lehman

and Stanley, 2010). Driving search towards promising parts of the fitness space where

local optima may be present ensures that other areas of the search will not be explored,

leading search to stay and explore the nearby area while more promising regions are
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far away in the solution space. Solutions located in these regions are called stepping

stones (Lehman and Stanley, 2011a, 2010, 2008; Risi et al., 2009). Stepping stones

are points in the solution space that may not be good as far as their objective values

are concerned, but can eventually lead to better or the global optima of a specific

optimization problem.

Search for novelty

Novelty search (Lehman and Stanley, 2011a, 2010, 2008; Risi et al., 2009) unlike tra-

ditional fitness based search is an alternative way of optimization towards an objective

function without having knowledge of this objective. In simple words it is looking for

a solution to a problem without knowing how close it is to solve it; fact that turns out

to have a major impact to the increased performance of this method in several problem

domains.

What novelty search seeks for is how interesting a new solution is in respect to all

previously found ones. To define “interesting” we need to move our point of interest

into behavior space which is a function of each phenotype, similar to the fitness function.

Nevertheless, it fully or partially describes the behavior without directly implying the

fitness function. As an example someone can think of a behavior could be defined as the

final position of the navigation robot or the trajectory of it in the previous robot-maze

example. Rewarding behaviors of the phenotype that are different from the previously

found ones drives the evolution to visit new points in the behavior search space.

One significant point here is that the behavior space in some domains can be limitless.

However, a valid behavioral metric can be found excluding behaviors that are mean-

ingless or do not comply with the natural limits of the problem. On the other hand,

the search space in the genotype level can also be infinite especially in neuroevolution

methods like NEAT where ANNs can grow during the evolution. A bounded space of

understandable-valid behaviors is then the key idea of novelty search where increasingly

complex behaviors present to the evolution as the complexity of the genotype grows

along.

Multi-objective optimization can also make use of a novelty metric alongside fitness,

trying to optimize both at the same time (Mouret, 2011). Another method that exploits

the diversity of the produced genomes in order to map the phenotype to the fitness is

also proposed by the literature (Mouret and Clune, 2012).
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Is novelty search similar to random?

Initial thoughts are converging that novelty search is similarly behaving to random

search, constantly looking for something new in the vast space of behaviors. It seems

similar to evolving random robot controllers without considering the behavior aspect

of their phenotypes hoping that enough exploration will be done in both genotype and

phenotype spaces. A random approach having no information about the observed be-

haviors the evolved phenotypes produce is not able to drive the evolution since different

and more complex genotypes can easily produce similar behaviors. The novelty in the

behavior level assures that the search will explore deeply the behavior space with the

hope that a fit behavior will be found. Aside from that, novelty search does not perform

backtracking which ensures that it will constantly drift away from already generated be-

haviors (i.e similar behaviors to already generated ones result to low novelty value). At

the same time there is no such guarantee in random search. Therefore, it is certain and

proven later in this thesis that no exploration in the behavior space will be performed

by random search.

How can novelty be measured?

As fitness is a function to measure the “goodness” of an individual, novelty measures

how different an individual is from all previously found individuals. To define different

a novelty metric measures the difference in the behavior space of the phenotype. Given

the phenotype’s behavior x a novelty measurement could be a function of x, f(x) which

computes how different (novel) is the specific behavior in respect to a set of other behav-

iors S in behavior space. As defined in (Lehman and Stanley, 2011a, 2008) sparseness

can give a good measurement of how sparse is the area of a newly observed behavior.

Given the behavior we can compute the sparseness by:

f(x) =
1

k

k∑
i=1

dist(x, Si) (2.2)

where S is a sorted set of the closest behaviors. Sparsity measures the average distance

from the k-closest behaviors.

Algorithm

Replacing fitness with a novelty value is not the only modification any evolutionary

algorithm needs in order novelty search to be implemented. To push search to visit new

areas in the behavior space rewarding novel behaviors coming up during the evolution is
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(a) Visited positions in the
map after 200 generations.

(b) Solution found after only
80 generations.

(c) Visited positions in the
map after 1000 generations.

Figure 2.9: Novelty search applied in the robot-maze optimization problem. Novelty
search deeply investigates the behavior space finding the solution even in the hard map
setting.

needed. For this reason, storing novel reference points in space (behaviors) during the

evolution is inevitable. The sparseness of a new behavior is computed by Equation 2.2

resulting in a numerical value that implies how novel is the observed behavior of an

individual phenotype. If the new behavior has a novelty value more than this threshold

it is stored in the set of novel individuals. Apart from comparing any new behavior with

all the novel behaviors, the newly produced one can also be confronted with the entire

set of behaviors produced by the population in the same generation of the evolution.

Having discussed the basic idea behind novelty search and how it can be implemented,

it is time to apply it in a known problem where fitness based search failed. Considering

the robot (see Fig. 2.6) - maze (see Fig. 2.7) example presented in this section, novelty

search is now taking the place of evolution towards the objective function used before

which was the distance to the goal. For the novelty metric to be evaluated, a behavior

metric has to be defined, which in this case can be the final position of the robot by the

time the simulation is finished. The sparsity measure then computes the reward of the

robot based on how sparse the observed behavior of the robot in regards to all novel

behaviors found before in the evolution is, based on the sparsity equation (see Eq. 2.2)

using k = 10. Figure 2.9 presents the results achieved by novelty search in this setting

by showing all the visited areas that robots were driven to by their evolved controllers.

In the easy setting map (see Fig. 2.9a), novelty search achieved to fully explore every

possible position in the map. In the hard map (see Fig. 2.9b, 2.9c), where fitness based

search failed to find any solutions close to the target position, novelty search succeeded

to do so after only 80 generations.
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Figure 2.10: Soft robots can be actuated through air pressure tubes (left), pressure
variations (middle), or internal explosions (right).

2.7 Soft Robotics

Soft robotics is a highly promising field of research dedicated to the science and engi-

neering of soft materials in mobile machines. As the name suggests soft robots (Trivedi

et al., 2008; Pfeifer et al., 2012) are made entirely of soft materials mimicking animals

or animal-parts that consist only of soft tissue (elephant trunk, tongue, worm, octo-

pus, etc.). Having no rigid parts in their design the degrees of freedom are infinite and

the possible ways of motion can become extremely complex. In traditional robotics,

joints and rigid parts predefine the space of possible movement and sometimes restrict

the robot’s locomotion strategy or gait to a specific set. In soft robotics, the absence of

rigid parts can on the one hand make the design of the locomotion strategy exceptionally

tortuous, on the other hand the gait alternatives are limitless.

The design and development of soft robotics is not an easy task, while the actuation

of such soft structures is the most challenging task. Actuating soft materials can be

done in many ways including pneumatic systems (Ilievski et al., 2011; Shepherd et al.,

2011), hydraulic, internal body explosions, passive actuation triggered by pressure or

temperature variations and others (Laschi et al., 2012; Seok et al., 2010). Figure 2.10

illustrates three different ways that soft robot bodies can be actuated. Gripping mecha-

nisms (Hirose and Umetani, 1978) can softly and gently conform to objects of any shape

and hold them with uniform pressure. This gripping function is realized by means of

a mechanism consisting of links and series of pulleys which can be simply actuated by

wires. Regardless traditional ways of actuating soft material robots, three dimensional

printing is now giving the freedom for multi-material structures to be created, which also

explodes the number of possibilities for the design of a soft structure such as a gripper

soft robot. Topological optimization techniques can be applied (Hiller and Lipson, 2009)

for producing functionalities in the design. Autonomously actuated soft robots (Tolley

et al.) (see Fig. 2.11) can also be designed having multiple advantages over rigid body

robots such as resistance under extreme temperatures and the capability of locomotion

on terrains of variant types.
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Figure 2.11: Autonomously actuated soft robot (Tolley et al.), it is able to withstand
extreme temperatures and variant terrain types.

Although soft robotics research field is in an early stage, it is growing fast. Some of the

characteristics that make soft robots interesting to explore are the infinite number of

degrees of freedom and the variety of materials (mostly elastic) that can be used, in the

contrary to rigid robotics that are mostly made out of metals and plastic. Nevertheless,

structure design and control of soft robotics remain challenging mostly because of their

soft bodies can only be represented in continuous state spaces, where only analytic

methods can be proven successful.

To sum up, locomotion capabilities of soft robots, as well as the possibilities of passive

movement (i.e materials that actuate reacting to environmental changes) makes them an

interesting topic for present and future research. Finally, considering also that soft ma-

terials are safer than conventional robot materials to humans, human-robot interaction

can benefit from this field (Sanan et al., 2011).

2.7.1 Soft Robotics in Simulation

Most work to simulate interactions and deformations within and between soft material

bodies are mostly focused on the graphical part of the problem (Faloutsos et al., 1997)

sacrificing the accuracy of the simulation (Teschner et al., 2004). Three dimensional

meshes (Müller et al., 2002) can represent these bodies including the dynamics of their

materials.

A recent work though, VoxCad simulator (Hiller and Lipson, 2012a) is focusing mostly

on the physics side of the soft material interactions not at the expense of a low frame

rate. VoxCad is a modeling and analyzing open-source software that can simulate soft

material deformations and interactions. In Figure 2.12 the graphical user interphase



Chapter 2. Background 22

Figure 2.12: VoxCAD (Voxel CAD), a cross-platform open source voxel modeling
and analyzing software.

of VoxCad software is presented during the simulation of the soft body robot in the

simulator.

VoxCad cannot model and simulate three dimensional meshes, yet a lattice is used to

represent the 3D workspace where voxels (three dimensional pixels) can be assigned dif-

ferent materials. Materials themselves are passive and cannot actuate without external

trigger. In this simulator this external force that can actuate the materials is the tem-

perature of the environment. The main variables of the environment is the base, the

amplitude and the period of the temperature. Furthermore, gravity acceleration of the

environment can vary. Materials have properties such as the elasticity of the material,

density, Poisson’s ratio, coefficient of thermal expansion (which determines how mate-

rials will be expanded in respect to the environment’s temperature), temporal phase in

respect to the temperature period, and the ground friction coefficients. Materials can

also be mixed together to create a new type of material.

Throughout this thesis, the terms structure or soft robot will refer to a set of connected

voxels (not unconnected parts) within the lattice space. The voxel dimensions are con-

stant through the experiments of this thesis, while the lattice space is variant. Since

the voxel dimensions are the same for all settings, the term resolution will be referring

to the number of voxels in each dimension. Note that different resolutions also refer to

different dimensions for the lattice as the voxel size is fixed. For experimental settings

used during the simulations see appendices A, B.



Chapter 3

Related Work

This chapter presents related research work in evolutionary robotics and methodologies

used to evolve robot controllers as well as robot morphologies in simulated (Artificial

Life) or physical environments. In addition, a lot of research work has been conducted

regarding the aspect of the encoding to the morphological evolution of soft robots. With

the design freedom soft materials give to any evolutionary method, it is of interest to see

what has been achieved so far. Most work utilizes a fitness based evolution to successfully

evolve virtual and physical robots. However, as it will be discussed later in this chapter,

novelty search has been used within an evolutionary setting in order to evolve virtual

creatures. Novelty search, as it was discussed in Section 2.6, is a diversity based method

where the objective function rewards the novelty in the behavior level.

3.1 Evolution of Virtual-Physical Robots

Robot controllers can be evolved through evolutionary algorithms on simulated (virtual)

robots. Moreover, evolutionary methods can be applied to physical robots (Nolfi et al.,

1994) where no damage can occur due to exploration of the action space. Controllers

represented by an encoding scheme can be generated and propagated from generation

to generation within an evolutionary framework until good solutions are found.

Figure 3.1: Karl Sims, “Evolution of virtual creatures” (Sims, 1994).

23
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Figure 3.2: The use of Lindenmayer systems results in creature morphologies that
have a more natural look (Hornby and Pollack, 2001).

Novel systems that make use of evolutionary methods to evolve complex encoding rep-

resentations such as artificial neural networks have been developed. These complex

representations can control not only the morphology of rigid body parts connected with

joints, but also control the forces applied to each joint. As a result, virtual creatures (see

Fig. 3.1) can be produced in a physical three-dimensional world (Sims, 1994). Different

fitness measures also give the possibility to the evolution of diverse creatures in respect

to these measures. This genetic encoding defines a hyperspace of infinite number of

possible creatures and behaviors, when it is searched using optimization techniques like

EA a variety of successful and interesting locomotion strategies emerge, some of which

would be difficult to invent or build by engineers. This was the first work successfully

tried to evolve both the morphology and the locomotion of virtual robots in a simulated

environment, based on such a complex representation for the genome (ANNs).

Computer graphic designers can profit from evolutionary techniques since the design

phase of some applications (i.e games, movies, etc.) is a time consuming process. How-

ever, the need for natural looking morphologies is of crucial importance in such op-

timization methods. Previous work (Sims, 1994; Lipson and Pollack, 2000) resulted

in unnatural looking shapes for the evolved virtual creatures and abnormal behaviors

mostly due to the vast solution space and the encoding representation of the genome.

A system that uses Lindenmayer systems (Hornby and Pollack, 2001) (L-systems) as

the encoding of an EA for creating virtual creatures was proposed. Creatures evolved

by this system have hundreds of parts, while the use of an L-system as the encoding

resulted in creature morphologies that have a more natural look (see Fig. 3.2). The

discussed method (Hornby and Pollack, 2001) showed that the encoding of the genome

can indeed have a big impact on the evolved morphologies.

Evolutionary methods have shown the ability to create complex designs for robots which

can perform tasks in the environment they are evolved in. However, these complex de-

signs are hard or sometimes impossible to be transferred on a physical robot. Generative

representation used in (Hornby et al., 2003), accomplishes to replace complex representa-

tions into a construction plan which uses simple robot components in a regular way (see

Fig. 3.3). This compact design space of the resulted method can indeed limit the possible
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Figure 3.3: Generative representation can define a set of rules that simple components
can be put together to generate a robot (Hornby et al., 2003).

morphologies given a set of possible morphological parts. As direct encoding schemes

have trouble capturing geometrical properties of the problem, generative encoding like

CPPNs can be used in order to take advantage of a problem’s regularities.

HyperNEAT (Stanley et al., 2009) is a method to evolve CPPNs which then determines

the topology and the weights of ANNs. It has shown promising results in evolving

the gaits of legged robots (Clune et al., 2009), whereas direct encoding schemes have

not been successful. Natural evolution is the only process which instead of evolving

only the brain of biological organisms, it also evolves the morphology of them. CPPN-

NEAT (Stanley, 2007) can be used as a generative encoding EA which can evolve both

features of virtual robots (Auerbach and Bongard, 2010a,b) (see Fig. 3.4), verifying that

more complex creatures than designers imagination can be created in such a setting.

With this representation it is also possible that a lower resolution phenotype space can

be used in the first runs of the evolution to save computational time without significantly

degrading the quality of evolved structures, while later a higher resolution space can be

used for a more detailed optimization.

Evolving objects with types of encoding based on concepts from biological development

like CPPNs can be a powerful way to evolve complex and interesting objects (Clune and

Lipson, 2011). These results can be used in applications in fields of engineering, biology,

and in others as diverse as art. Apart from the use in robot-bodies design evolution, EA

techniques coupled with indirect coding schemes allow the evolution of the morphology

and the motion control of soft bodies. In this case multicellular animats (Joachimczak

and Wróbel, 2012) in a two-dimensional fluid-like environment. Both the developmental

Figure 3.4: CPPN-NEAT can be used as a generative encoding for the evolution of
virtual robots (Auerbach and Bongard, 2010a).



Chapter 3. Related Work 26

Figure 3.5: “Unshackling Evolution: Evolving Soft Robots with Multiple Materials
and a Powerful Generative Encoding” (Cheney et al., 2013).

program that determines the morphology and the motion control are encoded indirectly

in a single linear genome, where a genetic algorithm can be applied to evolve it.

With the excel of 3D printing, soft multi-material robot bodies can be produced using

simple material types. These soft structures entirely made of soft-materials can be sim-

ulated (Hiller and Lipson, 2012a) allowing the evolution of their designs without the

costs of production. As it was first shown in (Hiller and Lipson, 2012b), the automated

design of three-dimensional bodies can obtain many functionalities through the distri-

bution of different materials inside their body. The virtual soft robots were successfully

evolved (EA) and tested for a single-direction locomotion displacement, while the best

evolved morphology was printed into a physical soft robot using a three-dimensional

printer. The soft robot tested inside a pressure-chamber and achieved to move itself

with a displacement that had only a small error compared to the one in the software

simulation.

Evolution of soft material robots as it was shown in (Hiller and Lipson, 2012b), can

result in soft robots able to produce locomotion. The possibility of evolving these soft

structures using an indirect encoding was of interest to be exploited by (Cheney et al.,

2013). A powerful generative encoding, CPPNs (Stanley, 2007), was used to generate

soft voxel-formed three-dimensional structures (see Fig. 3.5), coupled with the use of

NEAT algorithm which ensures the increasing complexity of the networks produced.

The superiority of this kind of generative encoding was verified, showing how CPPNs

can take advantage of their geometrical properties. Evaluation was done by a simple

Figure 3.6: Soft robot bodies are built out of meshes of tetrahedra (Rieffel et al.,
2014).
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Figure 3.7: Diverse morphologies evolved during a single run of novelty search with
local competition (Lehman and Stanley, 2011b).

displacement measure, while evolution tended to evolve different kinds of locomotion

strategies and morphologies as the fitness function was penalized for different kinds of

parameters. Furthermore, it has been shown that evolving morphologies (CPPNs) in

lower resolutions and then applying the same networks for higher resolution structures

can be beneficial, since the locomotion behaviors in lowers structures also apply in higher

saving computational time. An earlier work (Hiller and Lipson, 2010), apart from the

generative encoding of CPPNs, made use of Gaussian Mixture and Discrete Cosine

Transform to produce amorphous soft body structures.

The simultaneous evolution of soft robot morphology and control was also investigated by

recent work (Rieffel et al., 2014) (see Fig. 3.6). Some aspects of soft robot evolution were

verified in this work, namely muscle placement and muscle-firing patterns can be evolved

given a fixed body shape and fixed material properties. Furthermore, material properties

can be co-evolved alongside locomotion strategies. Finally, a developmental encoding

was introduced, allowing more complex parts to be added to soft robotic structures

during the evolution.

3.2 Evolving Virtual Creatures by Novelty Search

In problems with such high dimensionality as evolving both the morphology and locomo-

tion strategy of artificial creatures in simulated or physical environments, evolution does

not explore the solution space enough sticking with the first most promising morpholo-

gies to exploit. However, novelty search, a technique that explicitly rewards diversity,

can potentially mitigate such convergence. Methods for evolving such virtual creatures

like in (Sims, 1994) can utilize novelty search (Lehman and Stanley, 2011b) and be far

more explorative in the search space (see Fig. 3.7). Behavior novelty defined as a mea-

sure between morphological properties of the produced creatures driving the evolution to

explore more diverse morphologies. A larger diversity with regards to the morphological

properties of the evolved virtual creatures does not guarantee their ability to locomote in
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the simulated environment. However, combining fitness and novelty objectives through

local competition led to improved results, whereas novelty search alone failed.

As it was stated before, the work that is being presented in this thesis makes use of

novelty search to co-evolve the morphology and the locomotion capability of soft bod-

ied virtual creatures. As pure novelty search failed to evolve fit solutions in previous

work (Lehman and Stanley, 2011b) used, it is of interest to apply and investigate its

performance in virtual soft robots this time.



Chapter 4

Method

In this chapter an introduction to the problem specifications and a comprehensive doc-

umentation describing the methods used is given. As an initial experiment, a random

methodology to generate soft robot morphologies is implemented to verify that random

non-evolutionary approaches fail in such settings. Next, evolutionary methods are used

in order the morphology and the locomotion strategy of soft robots to be simultaneously

evolved in the simulated environment. A direct encoded genome is used within a simple

genetic algorithm as in (Cheney et al., 2013). This direct encoded GA is expected to

be unable to evolve efficient locomotion due to the irregular morphologies direct en-

coding is producing. Furthermore, a generative encoding method is used and paired

with the NEAT evolutionary algorithm in order to establish a baseline for the following

experiments, verifying previous work (Cheney et al., 2013).

Pure novelty search was applied in the evolution of three-dimensional virtual creatures

in a simulated environment (Lehman and Stanley, 2011b) using as a behavior metric the

morphology of the produced creatures, where it failed to compete with the traditional

fitness based search method. Novelty search is the main search methodology investigated

in this thesis. The implementation of this method alters the pipeline of the NEAT

and any evolutionary algorithm to fit the new objective function. In addition to the

discussion regarding the algorithm of novelty search, different behavior metrics that can

be used in this problem task are defined.

4.1 Problem Introduction

Recent work in evolutionary robotics shows that compositional pattern-producing net-

works (CPPNs) can encode soft robot morphologies. These networks can produce regular

29
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Figure 4.1: Soft robot uses four materials (two active, two passive), morphology
evolved penalizing actuated materials.

outputs which are translated to regular shapes for the structures produced, resulting in

efficient locomotion for the evolved virtual soft robots. VoxCad simulator provides a

test-bench for analyzing soft robot bodies that can be actuated through environmental

changes, which is the temperature variation in the specific setting. In addition to that,

recent work by (Cheney et al., 2013) showed that very interesting morphologies can be

evolved by the CPPN-NEAT algorithm in the specific soft robot simulation environment.

VoxCad

For the simulation of the soft material bodies, VoxCad’s (Hiller and Lipson, 2012a) un-

derlying physics engine Voxelyze was used as a stand-alone software to analyze the soft

structures without the computational cost of rendering. As far as the soft material simu-

lation settings are concerned, this thesis is not aiming at finding the best environmental

and material properties. All variables of the environment excluding the temperature

period and the gravity acceleration are constants throughout this thesis. Table A.1

describes and presents the values used in different variables of the simulation.

Materials

Within the VoxCad simulation software there is the option of defining and using a

palette of materials. Materials can be passive or active. Passive materials do not react

to temperature changes, while active materials expand and contract in respect to their

thermal properties. Figure 4.1 illustrates a soft robot consisting of all four materials are

used in the experiments. Red and Green are the only actuated materials with non-zero

and opposite thermal expansion coefficients, meaning that their phase in respect to the

actuation from temperature changes is equal to half a circle. Green voxels contract the
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same time red expand and vice versa, mimicking living organisms’ muscle tissue. The

two additional materials represent soft non-actuated tissue that can be soft (soft tissue)

or hard (bones). Cyan voxels are soft having five times smaller elastic modulus of their

material than Blue which have 50 MPa.

4.2 Random Generation of Soft Robots

To evaluate all the following evolutionary methods used, information about the perfor-

mance of random generated morphologies must be present. In order to achieve that, two

random approaches which will also help the understanding between direct and indirect

encoding are implemented.

The first implementation of a random morphology generator mimics “direct” encoding.

This method assigns randomly the presence of a voxel in the three-dimensional space of

the lattice. The probability of adding a voxel in given coordinates is 0.5. The material of

each newly added voxel is chosen randomly from the material palette. Each material has

the same probability of being chosen. After all voxels have been added and assigned a

material, unconnected parts of of the structure will be removed keeping only the largest

connected structure in the lattice.

An “indirect” way of generating random morphologies follows a different method of

assigning materials to voxels, adopting a set of rules in order to generate a new soft

robot morphology. This method holds two probabilities, the one refers to the probability

of adding a new voxel in the already generated structure, the next one denotes the

probability that the material of a new inserted voxel will be the same as the one of

the material is going to be connected to. First, a random material voxel is inserted

in a random coordinate into the lattice space. When a new voxel is to be added, a

connection (voxel) is chosen from the already added voxels. The side of the connection

is chosen from a uniform distribution out of all valid (within the lattice space) sides. In

this generative process there is also the possibility of creating structures in half of the

lattice space and then mirror the soft structures in both halves of it, generating in this

way symmetrical morphologies.

Considering these three methods the difference between direct and indirect coding pre-

sented in Section 2.3 is becoming easier interpreted. In the “direct” process a probability

determines the presence and the material for every coordinate in the lattice space. On

the other hand, the “generative” method holds a set of rules and probabilities defining

the structure that is going to be produced in the available space.



Chapter 4. Method 32

Random Generative Generative-Mirrored

0.5

1.0

1.5

2.0

2.5

3.0

B
o
d

y
le

n
gt

h
s

tr
av

el
le

d

Figure 4.2: Generative encoding creates more natural morphologies even in random
schemes. (see Settings B.3)

Figure 4.2 illustrates not only the actual performance (fitness in body lengths traveled

by top-1000 soft robots from 30000 total runs for each method) of the previously de-

scribed methods, but also one of the best performing soft robots of each method. Both

“generative” methods outperform the “direct” one due to the fact that they are capable

of generating regular morphologies. “Generative” random soft robot generation meth-

ods create more compact structures which can move easier due to their size and their

geometrical features. For the Generative-Mirrored approach even though the average

performance is slightly worse than the plain method it actually performs way better in

some distinct cases (i.e outliers). Adding geometrical properties resulted in getting more

efficient locomotion by the generated soft robots.

All methods achieved an average displacement of the soft robots around or more than

one body length, which is considered to be very low in respect to the robots generated

by evolutionary methods are presented later in this thesis.
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Figure 4.3: Direct encoding cannot capture the geometrical properties of some prob-
lems.

4.3 Direct-Encoded Evolutionary Soft Robots

In the previous section three random methodologies of “indirect” and “direct” generation

of soft robots were implemented, failing to produce any decent locomotion gaits for

the soft structures. Considering how vast the solution space is, random approaches are

doomed to fail in a definite number of tries. Therefore, a more sophisticated evolutionary

method is discussed here.

Direct encoded genomes coupled with a simple genetic algorithm is a successful approach

in evolving robot controllers. As it was previously stated in Chapter 2, mutations and

crossovers of real-value streams search the problem space effectively finding near optimal

solutions in demanding optimization problem domains. The GAlib C++ library (Wall,

1996) is used for the implementation of this method.

Representation of the genotype

As in every direct encoding scheme genotype is represented by a stream of bits, which

length is equal to the number of dimensions of the problem. The number of the materials

in the palette are the first dimensions of the problem. The presence or not of a voxel

at a given position in the lattice space adds one more dimension to the representation.

Analytically, its length can be represented by a stream of length equal to the number

of voxels in the lattice times the materials used plus one denoting the presence of the

voxel, the length of the genome is described by the following equation:

|Genome| = (lx × ly × lz)× (1 + |p|) (4.1)
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where lx, ly, lz are the dimensions of the lattice space, and |p| is the size of the palette

of materials.

Genome = 01010 . . . 011011︸ ︷︷ ︸
Presence

10101 . . . 110011︸ ︷︷ ︸
Material1

. . . 00011 . . . 111110︸ ︷︷ ︸
Materialn

The above stream of bits illustrates how a soft structure in VoxCad environment can be

represented by a direct encoding scheme. Each of the values of the stream is represented

by a float value between zero and one, which is represented by a stream of bits in lower-

level. The mapping from the genotype level to the phenotype is straightforward in this

case, the first stream of values is used to determine the presence of a voxel in given

coordinates while in case of presence the other n streams are used and the maximum

value in specific positions of the streams determine the material is going to be used.

Considering the representation of the genome, as well as the geometrical nature of the

problem itself it is not expected that direct encoding will capture this major property

of the problem (see Fig. 4.3). Therefore, it is anticipated that direct encoded genomes

will not be able to generate soft robots that can produce efficient locomotion in these

settings (Cheney et al., 2013).

4.4 Generative-Encoded Evolutionary Soft Robots

Direct encoding methods lack the morphology regularities of the soft robots evolved by

this method. Compositional pattern-producing networks can serve this function. CPPNs

are built up by a set of canonical functions which enable the outputs of the network to

produce repetitive, symmetrical and geometrically interesting patterns. Producing regu-

larities in the phenotype space and capturing geometrical properties of the optimization

problem, it is expected that this representation is going to produce efficient locomotion

strategies and morphologies of the soft structures (Cheney et al., 2013). Since, CPPNs

must be queried for every coordinate of the lattice space, the input nodes (neurons) of

the CPPN are assigned to x,y,z normalized coordinates following (Cheney et al., 2013),

so that:

x, y, z ∈ [−1, 1]

A bias input node is also introduced in the genome CPPN representation, this will allow

the network to produce arbitrary outputs different from the defaults when all other

inputs values are set to zero. More inputs could be added to the CPPNs, for instance

the distance from the center point of the Cartesian phenotype space (lattice) as described

in (Stanley, 2007) and used in (Cheney et al., 2013), which naturally adds more bias

towards symmetrical structures. However, the evolution of such aesthetic structures is
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Figure 4.4: Each genotype (CPPN) is queried for every coordinate inside the lattice,
its outputs determine the presence of a voxel and the type of its material.

not much of interest to exploit. CPPNs, as it is shown later in this thesis, can evolve

symmetrical morphologies without this extra information input node(s). The proposed

input nodes for the three dimensions of the Cartesian space provide the minimum bias

to the network outputs. Figure 4.4 illustrates the topology of a random CPPN network

with the input and output nodes previously described. The set of nodes and connections

determine the topology of the network. The topology of these networks can be variant

and be evolved alongside the weights of the connections in any neuroevolution method.

The divergent part of the network between the input and the output nodes is described

by the genotype and it is the one that is going to be evolved and altered during the

evolution. The presence of a voxel in each coordinate of the lattice is determined by

a single output of the CPPN, denoted with p while the selection of the material is

determined by n-outputs. The node with the maximum value out of the n-outputs will

determine which of the materials is going to be used in the specific voxel only in cases

this is present.

4.4.1 Evolution of Generative Encoded Genomes

The evolution of these indirect representations of the genotypes can be evolved with any

method able to evolve artificial neural networks, since these are identical to CPPNs.

CPPN-NEAT (see Sec. 2.3.1), is a method to evolve CPPNs with the NEAT evolution-

ary method. Previous work (Cheney et al., 2013), showed that this method can indeed

evolve the morphologies of the soft robots in the VoxCad simulation environment. Hyper-

NEAT 1 is used for the implementation of the CPPN-NEAT algorithm. Algorithm 4.1,

presents the pseudocode for the evolution under CPPN-NEAT method. In addition, a

brief explanation of the function used in the algorithm follows:

1HyperNEAT v4.0 C++ by J. Gauci code (url: https://github.com/MisterTea/HyperNEAT)

https://github.com/MisterTea/HyperNEAT
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Algorithm 4.1 CPPN-NEAT evolution

1: population = ∅
2: species = ∅
3: generation[0] = initial population()
4: for i = 0 to max generation do
5: species = species ∪ speciation(generation[i])
6: evaluation(generation[i])
7: adjust fitness(generation[i], species)
8: selection(generation[i], species)
9: generation[i+ 1] = reproduction(generation[i])

10: population = population ∪ generation[i+ 1]
11: end for

Initial population Before the evolution starts, an initial population must be produced,

identical genomes (CPPNs), with variant connection weights fill up the population.

Speciation Takes place and split the population in separate species or adds individuals

to already existing species in respect to their networks’ topologies; a compatibility

function determines the similarity between two genomes (see Eq. 2.1). However,

all firstly introduced genomes belong to the same species, due to the identical

topology of their CPPNs.

Evaluation Once the population is filled with new individuals, these have to be eval-

uated. Simulation is taking place for each of the individuals of the population,

where each one of them is awarded with a fitness value.

Fitness adjustment After all individuals are evaluated, each species is assigned a

value which is the sum of the fitness values of the individuals belonging to this

species divided by the number of the individuals. This way, it is been decided how

many individuals each of the species will breed and it is directly determined by

the average fitness of each species.

Selection As soon as the number of new individuals each species is determined, only

the top 20% of the species population will reproduce, the rest population will

“die”. Competition, and Elitism as other genetic selection techniques can also be

used in this step of the evolution.

Reproduction There are two ways for the selected individual inside each species to

reproduce. These are mutation, which slightly changes the genome of one parent

to create a new genome, and crossover, where two parents combine their genes to

create a new individual.
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Algorithm 4.2 CPPN-NEAT with novelty search

1: population = ∅
2: novel inds = ∅
3: species = ∅
4: generation[0] = initial population()
5: for i = 0 to max generation do
6: species = species ∪ speciation(generation[i])
7: evaluation(generation[i])
8: for all ind ∈ generation[i] do
9: novelty = sparsity(ind, (generation[i]− ind) ∪ novel inds)

10: if (novelty ≥ novelty threshold || novel inds == ∅) then
11: novel inds = novel inds ∪ ind
12: end if
13: end for
14: adjust novelty(generation[i], species)
15: selection(generation[i], species)
16: generation[i+ 1] = reproduction(generation[i])
17: population = population ∪ generation[i+ 1]
18: end for

4.4.2 Novelty Search

Novelty search, as first presented in Chapter 2, requires only small changes in the pipeline

of an evolutionary algorithm. Fitness is replaced by a novelty metric which determines

how novel is a phenotype’s observed behavior with respect to all novel behaviors found

earlier in the evolution. Sparsity (see Eq. 2.2) is used to determine this value while

every individual is compared not only with the previous novel behaviors, but also with

the observed behaviors by individuals from the current generation. The algorithmic

adjustments within CPPN-NEAT algorithm are indicated in Algorithm 4.2 (Red colored

text), where the pseudocode of novelty search is presented.

Evaluation function in fitness based evolution was responsible of evaluating an indi-

vidual in respect to an objective. This objective function is equal to the body-lengths

traveled by the soft robot within a specific time span. However, the same function is

now also responsible for observing the behavior of each individual and record it. In

this way, the novelty of a behavior can be computed based on recorded behaviors of

other individuals. Function sparsity computes the sparseness (see Eq. 2.2) of a specific

individual’s observed behavior in the behavior space. Following the evaluation of each

individual, its behavior will be compared to all novel behaviors stored during the evo-

lution. A threshold determines if the observed behavior is considered novel in respect

to the set of behaviors was compared to. The fitness adjustment of the previous code

example is becoming novelty adjustment following the same functionality, selection

and reproduction operations can be applied in the same way.
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4.4.2.1 Behavior in novelty search

Behavior can be defined as the way that a human/machine behaves towards or within

an environment. Regarding the evolution of soft robots in the specific simulated envi-

ronment, a behavior can be defined as the way soft robots behave in respect to their

locomotion strategy. Every aspect of the soft robots movement that can be observed

can be used to describe their behavior. Previous work (Lehman and Stanley, 2011b) in

a try to evolve walking three-dimensional virtual creatures used the evolved morphology

of the creatures to describe their behavior. Although, in this work comparing the mor-

phology of the evolved soft robots is similar to comparing the chromosome (CPPN) of

each individual. Therefore, only the comparison of the observed behavior in phenotype

level can lead the evolution towards more complex behaviors.

A straightforward function that determines the goodness of an individual is used in

fitness based methods. This measure drives the search in “good” areas of the search

space. However, the same measure cannot be used for novelty search. What novelty

search looks for is novelty in behavior space. It is expected that behaviors that contain

information about the goodness (displacement) of individuals will be more successful

than behaviors that include other aspects of the soft robots’ behavior. In cases that

behavior does not contain information about the objective, the search for novelty will

become random in regards to this objective function.

Behaviors that describe the morphology of the evolved robots have failed (Lehman and

Stanley, 2011b), since search is then forcing new types of morphologies without caring

about the actual target of the evolution, which was the efficient locomotion. To present a

similar idea consider a behavior metric that enumerates the number of voxels a soft robot

consists of. This is not a well-founded behavior metric, since the search will reward new

structures with different number of voxels from previous evolved structures. Therefore,

there will not be exploration in the behavior aspect that affects the actual target of the

evolution, which is to produce and evolve efficient locomotion strategies.

Table 4.1 presents all behaviors used for the novelty metric computation together with

the sampling rate of the recorded values during the simulation and their description. For

all recorder behavior metrics a constant sampling rate ensures that all signals have the

same length. The behaviors designed to describe the strategy and the efficiency of the

evolved locomotion. They contain information that indirectly implies both the objectives

of the evolution. Trajectories (2D and 3D), incorporate all the needed information such

as speed, displacement, and locomotion strategy. To avert from same trajectories in all

possible directions trajectories are normalized, meaning that their starting coordinates

are always the start of the axes (< 0, 0, 0 >) and the point coordinates of the trajectory
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Table 4.1: Observed behaviors of the soft robots used for the sparsity computation
in novelty search.

Behavior Sampling DFT Example Description

3D-trajectory 1 KHz

−0.002
−0.001

0.000
0.001

0.002
0.003

0.004 0.000

0.002

0.004

0.006

0.008

0.010

−0.00015

−0.00010

−0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
Set of three-dimensional
sampled points of the
robot’s center of mass
during simulation.

2D-trajectory 1 KHz

−0.0015 −0.0010 −0.0005 0.0000 0.0005 0.0010 0.0015
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are rotated so their center of mass is normalized to a specific angle (θ = 90o). To

measure the difference of two trajectories the Euclidean distances between coordinates

at the same sampling time are measured, so that:

First trajectory: ti = t1i , t
2
i , . . . , t

N
i (4.2)

Second trajectory: tj = t1j , t
2
j , . . . , t

N
j (4.3)

Difference: ti − tj =

N∑
n=1

dist(tni , t
n
j ) (4.4)

where n is the number of sampled coordinate points and dist is the Euclidean distance.

Pace is also a very informative behavior metric as it directly measures the speed of

the robot. Voxels touching the ground can also imply information about the locomo-

tion strategy but not enough about the actual performance regarding the displacement.

Hopping robots that move fast can have same behaviors with regards to this metric with

hopping robots with zero speed. Maximum pressure among the voxels’ connection is yet

another behavior metric, pressure is expected to become higher as structures move faster

and interactions with the ground eventually getting harder. Finally, maximum kinetic

energy is a behavior metric that straightly determines the displacement of the voxels in

the structure. To compute the difference between two signals, a straightforward method

is used. Subtracting the one signal from the other, taking the absolute differences, and

summing them up to compute one single value that describes how variant the two signals

are. More specifically:

First 1-d signal: si = s1i , s
2
i , . . . , s

N
i (4.5)

Second 1-d signal: sj = s1j , s
2
j , . . . , s

N
j (4.6)

Difference: si − sj =
N∑
n=1

|sni − snj | (4.7)

For all behaviors but trajectories, the Fourier profile of their signals can also be used

as an observed behavior. This process of transformation of the one-dimensional sig-

nals into frequency space eliminates shifts of signals in time-axis. The discrete Fourier

transformation:

Cki =

N∑
n=1

sni e
−i2πkn/N,, ∀k ∈ Z (4.8)

For the Fourier transformations of these signals the first twenty coefficients are compared,

and the summation of their absolute differences determines the difference of the two

behaviors.

Difference in frequency: si − sj =

R−1∑
k=0

|Cki − Ckj |, R = 20 (4.9)
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In this section, different observed behavior metrics have been defined. The similarity or

difference of two same type behaviors can be determined by the equations provided while

these measures of difference are used by the sparsity equation (see Eq. 2.2) to compute

the sparseness of a given behavior in the behavior space. Individuals with novel observed

behaviors (high sparseness value) are then stored in a list helping the evolution to avoid

generating similar behaviors (see Alg. 4.2).





Chapter 5

Results & Discussion

This chapter presents the performance and the resulted evolved virtual soft robots by

the methods described earlier in this thesis (see Ch. 4). In addition, the performance

and significant findings of the evolutionary methods used for the co-evolution of the

morphology and the locomotion strategy of soft robots are discussed in details. In the

previous chapter it has been shown how random generated soft robot morphologies fail to

produce any locomotion capabilities in this setting. Thus, the results obtained by these

random methods are not discussed in this chapter. The performance of evolutionary

methods is only presented here. Pure novelty search is compared in respect to the

goodness measure used in the simulations (displacement of soft robots in body-lengths)

to fitness based search. The effect that novelty search has in the average and champion

fitness of the population during the evolution is investigated in detail in the following

sections. Additionally, both search methods are compared with respect to the number

of novel behaviors they evolve during an evolution run. Moreover, the influence of the

behavior metric in novelty search is shown, where all behavior metric proposed earlier are

used to define the novelty of an individual. An altered number of closest behaviors in the

sparsity equation of the novelty search, leads to an interesting conclusion about the effect

it has in the evolution process. Genetic selection techniques such as competition and

elitism are also used to improve the baseline methods. More specifically, elitism is used

in a proposed methodology to incorporate fitness information in novelty search. Last,

the performance of both methods are investigated for several levels of gravity. This will

show that gravity conditions do not have any effect in favor of a specific search method.

Furthermore, evolved locomotion strategies under different gravity conditions show how

environmental conditions can affect the evolved morphologies and the strategies of soft

robots.

43
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(a) 2-legged pull locomotion

(b) 4-legged (nose & tail) animal-like locomotion

(c) 2-legged push-pull locomotion

(d) 2-legged galloping

Figure 5.1: Champion (best overall) morphologies evolved in independent runs of
fitness based search. Each row illustrates the locomotion strategy of the individuals
created. (Settings B.3)

As in (Cheney et al., 2013) and for comparison purposes a population of 30 on each gen-

eration is used, the maximum number of generations in the evolution is set to 1000. For

more details about the setting are used in the evolutionary algorithms, see Appendix C.

For simulation settings used see Appendix A. Due to computationally expensive simu-

lations, not all experiments are performed using a lattice resolution of 103, resolutions

lower than 103 are used as well. More specifically, 53, 73, 103 lattice resolutions are used,

see Appendix B.

5.1 Evolved Morphologies

In this section some of the evolved morphologies and their effective locomotion patterns

evolved within fitness based and novelty search will be discussed. Apart from the perfor-

mance that the two methods achieved, both of them were successful in evolving effective
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(a) 4-legged animal-like locomotion

(b) 2-legged galloping

(c) L-shaped hopper

(d) 2-legged galloping

Figure 5.2: Champion morphologies evolved in independent runs of novelty search.
Each row illustrates the locomotion strategy of the individuals created. (Settings B.3)

strategies for the locomotion of the evolved morphologies. Figure 5.1 shows four differ-

ent gait types evolved by fitness based search. All of these morphologies are considered

“good” in respect to their fitness value, meaning that they achieve to travel up to ∼ 10

body lengths during the simulation time (0.4 sec.). Considering that the lattice space

used for this experiment was of size 103. The produced low-resolution soft robots cannot

be compared with real-life organisms. However, the results are shown that even in such

low dimensions life-like locomotion can be evolved.

For the fitness based search, soft body morphologies can use their front leg(s) to pull

themselves forward (see Fig. 5.1a), evolve a four-leg locomotion where a nose and a

tail are mostly used for stability (see Fig. 5.1b), push and pull themselves forward (see

Fig. 5.1c), and gallop using both of their legs (see Fig. 5.1d).

Moving from fitness based search to novelty search locomotion strategies do not differ

too much since the resolution does not allow the virtual soft robots to explore more

locomotion techniques. However, novelty search proves its merits with regards to the
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(a) Fitness based search

(b) Novelty search

Figure 5.3: Champion morphologies evolved in independent runs of fitness based and
novelty search in a lower resolution (53). Each row illustrates the locomotion strategy
of the individuals created. (Settings B.1)

morphologies evolved. More complicated structures are now evolved, this can be ex-

plained by the fact that novelty search pushes the evolution to investigate new kinds of

behaviors resulting to more complex topologies for the networks (CPPNs) that repre-

sent the soft robot morphologies. Figure 5.2 presents four champion morphologies and

their locomotion strategies. Once again, two-legged galloping soft robots (see Figs. 5.2b,

5.2d), animal-like locomotion based on four legs (see Fig. 5.2a), and hopper soft robots

(see Fig. 5.2c) are evolved.

Having presented the types of locomotion patterns have been evolved in the specific

resolution for the lattice (103), it is of interest to see what both search techniques

can achieve in a lower resolution setting. Figure 5.3 illustrates the results for both

methods in a lower resolution setting (53). Both methods achieve in evolving fit soft

robots which can locomote efficiently. What is interesting though, it is the fact that

all experiments held by fitness based search failed to produce the locomotion strategies

evolved by novelty search. A “quarter-pyramid” shaped soft robot (see Fig. 5.3a) was

the champion individual in almost all runs of fitness based evolution in this setting,

whereas novelty search came up with two-legged virtual creatures (see Fig. 5.3b).

Different locomotion strategies have been evolved under two different methods, using

the same settings. The discussion following in the next sections is mostly focused on the

performance comparison of novelty search against the traditional fitness based method

within CPPN-NEAT evolutionary method.
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Figure 5.4: Best fitness so far, 10 individual runs for fitness based search. Each line
is a different run. (Settings B.2)
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Figure 5.5: Best fitness so far, 10 individual runs for novelty search. Each line is a
different run. (Settings B.2)
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Table 5.1: Evolutionary methods

Method Encoding EA Selection based on

Novelty Search CPPN (Indirect) NEAT Sparsity
Fitness Search CPPN (Indirect) NEAT Displacement in body lengths
Random Search CPPN (Indirect) NEAT Random
Fitness Search - D.E. bit-stream (Direct) GA Displacement in body lengths

5.2 Into The Performance of Novelty Search

Before comparing novelty search to fitness based search, it is of interest to show how they

individually behave under the same simulation settings. Figure 5.4 shows 10 independent

runs for fitness based search. Following the gradient of the objective function fitness

based evolution does small steps towards better and more optimized solutions from

generation to generation. However, fitness based evolution often focuses on specific

morphologies which then tries to optimize leading the evolution to stop at these local

maxima.

Figure 5.5 shows 10 independent runs for the novelty search under the same settings.

When compared to the fitness based search (see Fig. 5.4) a clear difference can be

observed. Evolving for novelty means that within the evolution novel behaviors are re-

warded instead of fit behaviors or behaviors that lead to the optimization of an objective

function. Fit individuals in respect to the objective function, for which novelty search

has no information within the evolution process, are results of new novel behaviors that

novelty search looks for. Observing only big steps in the fitness, it is valid to say that

there is no optimization of specific morphologies within novelty search. Initially, novel

individuals are highly rewarded, these individuals can be very good in respect to the

fitness or not. In the next generations, mutations, crossovers, and copies of these novel

individuals are not going to be highly variant in respect to their chromosome from their

ancestors, resulting to similar behaviors. These comparable behaviors are not going to

be remarkably rewarded in respect to their novelty value. Thus, highly novel individuals

are producing less novel children in regards to their behavior. These children, while their

fitness can be higher than their ancestors’ and still having the potential to be optimized

further, will not have the chance to reproduce in the next generations and be further

improved in regards to the objective function.

To extensively compare the performance achieved by novelty search method, its per-

formance is set side by side with fitness based search, random search, and finally a

simple genetic algorithm with direct encoded genomes. The same experiment held un-

der two different simulation settings (for resolutions 53 and 103). Notice, that the first

three methods are referring to a generative encoding (CPPNs) evolved by CPPN-NEAT
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Figure 5.6: Comparison of simple genetic algorithm (direct encoding) against novelty-
fitness-random search with generative encoding. Best fitness so far averaged over 10
runs. (Settings B.1)

evolutionary algorithm and using selection in respect to novelty, fitness, and random se-

lection. The last method uses a direct encoded genome driven by fitness within a simple

genetic algorithm. Table 5.1 presents the methods used for the evolution of soft robots.

Two-dimensional trajectories, as described in the previous chapter (see Sec. 4.4.2.1), are

used by novelty search in order to describe the novelty in the behavior space through

sparsity equation. The objective function that describes the goodness of solutions is the

displacement of the soft robot’s center of mass from its initial position in body-lengths

and it is used for all fitness based methods. Random selection in CPPN-NEAT achieved

choosing random selected individuals to breed on each generation. For direct encoding,

direct encoded genomes represent the solutions as described in Section 4.3.

Figure 5.6 presents the results for the low resolution soft robots (53). The average

best displacement so far of the soft robots in body lengths is presented alongside the

deviation error. Notice, the difference between novelty search and the other methods.

Novelty search evolves structures that are superior than any other method does in these

settings. It should be mentioned that in such a small structures complex locomotion

patterns cannot be evolved due to stability issues of the simulator and because of the

fact that lightweight structures can be bouncy leading to ball shaped structures capable

of achieving large displacement from their initial positions. That being said, we still
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Figure 5.7: Comparison of simple genetic algorithm (direct encoding) against novelty-
fitness-random search with generative encoding. Best fitness so far averaged over 10
runs. (Settings B.3)

have to deal with an optimization problem, where local optima and global ones can

be found as the number of the possible solutions in this setting, using 4 materials, is

∼ 2, 3 × 1087. Using the two-dimensional trajectories of the soft robots, novelty search

visits optimal solutions that none of the other methods does. Local optima can prevent

fitness based search to achieve the performance of novelty search. Encoding limitations

in direct encoding cannot lead to optimal solutions for this settings. In the case of

random search, the individuals of each generation are selected randomly to reproduce.

Having neither the information about their fitness, nor the driving force of novelty search

that seeks for novel behaviors, it fails to evolve any decent locomotion. The only reason

random search in CPPN-NEAT achieves to evolve displacement of ∼ 5 body-lengths,

is the powerful encoding used (CPPNs). The simple genetic algorithm approach which

uses a direct encoded chromosome to represent the structure of the soft robots performs

better than using random selection with an indirect encoding. Structural symmetry and

regularity does not show all of its merits in such low resolution settings.

Moving to higher resolution lattices, it is expected that generative encoding will prove

its advantages over the direct encoding scheme (Stanley, 2007; Cheney et al., 2013).

More complicated morphologies can be produced (morphology space for 103 lattice res-

olution: 9.3× 10698). Furthermore, the space of behaviors, for instance two-dimensional
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Figure 5.8: Fitness of the champion per generation alongside best fitness so far for
fitness-novelty search, averaged over 10 runs. (Settings B.2)

trajectories, becomes larger since bigger and more detailed soft robots can achieve higher

displacement and more complex gaits. As it has been shown before, these higher res-

olution morphologies can achieve life-like locomotion. The same experiment as before

held under a lattice resolution of 103. Figure 5.7 illustrates the performance (i.e best

displacement so far) of the four different methods in these higher resolution settings.

Results reassure that novelty search achieves higher fitness on average against fitness

based search. Nevertheless, there is no tremendous difference as in the previous experi-

ment. Both methods achieve to evolve the soft robot structure with the highest fitness

found in all experiments (∼ 14 Body lengths). Novelty search behaves more constant in

evolving individuals with high fitness in all runs, on the other hand most of individual

runs of fitness search are being trapped in low fitness local optima, trying to optimize

specific individuals without trying to explore deeply the fitness landscape like novelty

search successfully does. Random selection within CPPN-NEAT evolution produced

low fitness morphologies for soft robots. The high difference between random selection

evolution and novelty search proves that seeking novel behaviors in novelty search can-

not be considered as a random search. The superiority of generative encoding (CPPN)

over direct encoding can be evidently observed. Regular in shape morphologies can take

advantage of their geometrical properties to locomote efficiently. Moreover, the perfor-

mance of direct encoding when a higher resolution lattice is used for the soft robots is
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Figure 5.9: Distributions of the average fitness of the population every 100 genera-
tions, results from 10 runs of fitness (Blue) - novelty (Green) search with generative
encoding. (Settings B.2)

radically decreased. Structure and morphological regularity is a necessity for soft robots

in order to perform decently in this resolution, a property that direct encoding cannot

capture failing in these settings.

Novelty search managed to improve the average displacement of the soft robot mor-

phologies. The metric that both search methods are compared against each other, is

the best fitness so far. Only the champions of each generation affect this metric while

an important question is how the population of each generation is affected with regards

to the search method that is being followed. The average fitness of the population, as

well as the champion’s fitness are two cues that can point out interesting properties of

each method. Figure 5.8 presents the fitness of the champion soft robot (best within the

generation) alongside the best fitness so far for both novelty and fitness based search

averaged over 10 evolution runs. In fitness based search, champions of each generation

are getting better through the evolution resulting to an approximately monotonically

increasing function. However, in novelty search a random pattern for the champions of

each generation can be observed. An early improvement is mainly caused by the gener-

ative encoding while the performance of the generations’ champions is not affected by

the search towards novel behaviors. What is interesting, is that on average the champi-

ons during novelty search evolution are worse than those fitness search evolves, whereas
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Figure 5.10: Number of novel behaviors found up to generation, averaged over 10
runs. The novelty measure is computed as the average distance from the 10-nearest
behaviors for fitness-novelty search with generative encoding. (Settings B.2)

the best fitness so far is better for novelty search in this setting (lattice resolution 73).

Hence, individuals that resulting in the increased performance of novelty search clearly

lie on the tails of the fitness distributions on each generation. In the same fashion the

average fitness of each generation also seems to be affected by the different optimization

method. Figure 5.9 illustrates the distribution of the average fitness per generation of

10 independent runs for novelty and fitness based search. The average fitness of each

generation is shown for every 100 generations. The violin-like distributions show that

the average fitness per generation remains stable through the whole evolution (1000 gen-

erations) for both methods. Additionally, the average fitness is significantly lower for

novelty search, meaning that when the evolution is being driven towards novel behav-

iors there is no guarantee that novel findings in the behavior space are also fit solutions.

What has been shown in the last two figures (see Figs. 5.8,5.9), evidently shows that

although novelty search achieves finding more “fit” solutions than fitness based search

in the specific problem domain, the average fitness of both generation champions and

population remain lower than in fitness based search.

Until this point, the performance of both fitness and novelty search methods have been

compared in the same objective metric, the displacement of the produced soft robot

morphologies. The former method tries to optimize genomes in respect to the specific
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Figure 5.11: Novelty search visits a vast amount of behaviors achieving in this way
to find fit individuals, and avoid local optima of the objective function. (Settings B.2)

objective function, while the latter is focusing the search into creating diversity of the

population in the behavior level. It is of interest to show the performance of both meth-

ods in a different evaluation metric. The evaluation metric is used in this experiment

is the number of novel behaviors generated within an evolution run. Inverting the eval-

uation metric, so it is in favor of novelty search, it is expected that novelty search will

outperform fitness based search by a huge margin. Figure 5.10 presents the number

of novel behaviors that the two evolutionary methods generated averaged over 10 runs.

Both methods use the same settings (behavior/constant values) to determine the novelty

of a behavior. The resulted plot shows that comparing these two methods in this metric

is pointless as novelty search drives the evolution towards spaces in the behavior space

that have not been visited before. As a result, novelty search produces approximately

one novel behavior per generation. Novelty search achieves better performance than

fitness based search in both objectives set so far, evolving fit, and at the same time

diverse solutions. To visualize the difference in the behavior space of the two meth-

ods, Figure 5.11 illustrates all the stored novel behaviors (two-dimensional trajectories)

found in one evolution run of novelty and fitness based search. The initial position of the

soft robots is the start of the axes, and the centroid of the trajectories is normalized to

be perpendicular to the horizontal axis. The differently colored trajectories verify that

novelty search searches the space of behaviors more than fitness based search does. In

addition, observing the performance of these trajectories is easy to interpret that longer

trajectories (higher fitness) have been produced by the first method.

In this section, the performance and several aspects of novelty search has been discussed.
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(a) Fitness based search

(b) Novelty search

Figure 5.12: Fitness based search trying to optimize a specific structure, whereas the
search for novelty results in a variety of shapes. (Settings B.3)

Novelty-search achieved higher average displacement of the evolved soft robots against

traditional fitness based search, where two-dimensional trajectories have been used to

define the behavior in all settings (lattice resolutions of 53, 73, and 103).

5.2.1 Diversity of Individuals in Novelty Search

The gain in performance that novelty search achieved over fitness based search has

been discussed in detail. At the same time, evolved morphologies illustrated earlier

in this chapter (see Sec. 5.1) show that both methods can create morphologies that

are able of efficient locomotion. The diversity of the individuals in the behavior space

verified how novelty search can achieve the gain in the objective measure by seeking

for novel behaviors. Another interesting question is what happens in the morphology

of the soft robots during the evolution under these two different methods. Figure 5.12

shows the champions every hundred generations of an experimental run for novelty and

fitness based search. While the fitness based search is focusing on the optimization

of a specific morphology, novelty search is searching the behavior space unveiling novel

behaviors and morphologies. The same motif appears in every independent run of fitness

and novelty search. Novelty search evolves a larger variety of morphologies, whereas

fitness based evolution is focusing to certain shapes, different in every run. Both search

techniques have their advantages and disadvantages. First, fitness based search optimizes

(optimized distribution of materials within the structure) certain shapes during the

evolution, while novelty search does not optimize them. Althoug novelty search allows

the evolution of highly novel behaviors-morphologies, these novel morphologies even in
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Figure 5.13: Best fitness so far penalizing actuated materials for fitness-novelty search
with generative encoding, averaged over 10 runs. (Settings B.1)

cases that they perform well under a task will never have the time to be improved. Later

in this Chapter ways of combining both search methods’ advantages will be investigated.

5.2.2 How Behavior Selection Affects Novelty Search

In novelty search a good behavior metric must contain information about the objective

function the search is trying to optimize the individuals for. In the case of evolving the

gait of soft robots, trajectories can be highly informative regarding the displacement of

the robot’s body, as well as the locomotion strategy that it is observed. Two soft robots

with different gaits, which traveled the same distance within an equal time horizon, have

the same fitness if displacement is only measured. Most objective functions used in the

evolution of robot-gait cannot describe the locomotion strategy produced by the robot

controller. The observed behavior of a robot can contain this information. Novelty

search can take advantage of a descriptive behavior metric, forcing the evolution to seek

novel solutions in the behavior space. As a result, it can result in the evolution of

ten times more novel behaviors than fitness based search (depending on the threshold

and the behavior metric) (see Fig. 5.10). Fit individuals will be found as the behavior

space is heavily searched. The importance of the behavior metric in novelty search

is crucial in order for fit solutions to be evolved. Two-dimensional trajectories in the
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Figure 5.14: Distributions of the champion fitness resulted from 10 independent runs
under different defined behaviors for novelty search. Fitness search is also evaluated
under the same settings (left - blue box). (Settings B.2)

evolution of soft robots contain all the information needed to determine the fitness

(displacement). This metric is incorporated inside the behavior (trajectories) assuming

constant sampling rate of the trajectories. To prove that, the performance of novelty

search is investigated when no information about the objective function is provided

by the behavior, an objective function for which two dimensional trajectories do not

contain information about is selected. The objective function is a penalized version1of

the displacement of the soft robots in respect to the number of actuated (active) voxels in

the soft robot. Figure 5.13 illustrates the best fitness so far for both novelty and fitness

based search averaged over 10 evolution runs. Comparing the results with Figure 5.6

novelty search performs poorly in regards to the evaluation metric, whilst the same

method outperforms traditional fitness based search when the whole information of the

fitness function is incorporated into the behavior. Trying to find novel trajectories in the

first case has been proven successful in respect to the final displacement of the evolved

individuals, when the objective information was incorporated into the behavior. On the

other hand, novelty search failed to optimize the distance that soft robots traveled and at

the same time minimize the number of actuated voxels using the same two-dimensional

trajectories as the behavior. As it has been shown, the performance of novelty search

depends heavily on the selection of the behavior metric.

1Actuated materials penalized fitness function:

f = (1 − (nactuated/ntotal)
1.5) × disp

where nactuated is the number of actuated voxels, ntotal total number of voxels, and disp the displacement
of the softbot’s center of mass.
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To verify the previous finding, where novelty search failed to compete with fitness based

search when the behavior metric used did not contain information about the objec-

tive function, a set of behavior metrics are used. Figure 5.14 illustrates the perfor-

mance achieved by novelty search for all behaviors defined in Table 4.1. In addition,

the performance of fitness based search is presented in the left side of the figure (blue

box). A set of 10 behavior metrics are used including the three-dimensional trajec-

tories of the soft robots (3D-Traj), the two-dimensional projection on x, y-axes of the

previous three-dimensional trajectories (2D-Traj), the pace of the soft robots sampled

every 0.001 sec. (Pace), the discrete Fourier transformation of the same signal which

is sampled every 0.00001 sec. (DFT-Pace), the number of voxels touching the ground

on each sampling time-step (VTG, DFT-VTG), the maximum pressure per time-step

(Pr, DFT-Pr), and the kinetic energy of the whole structure (KE, DFT-KE). What

is shown in Figure 5.14 is the fitness in body lengths of the champion soft robot of

the whole evolution from 10-independent runs. Both trajectory-type behaviors achieve

the best performance with regards to the fitness measure. The fitness distribution of

overall champions in novelty search with the two-dimensional trajectories shows a small

difference in favor of two-dimensional over three-dimensional trajectories. The third

highest performance is achieved by the maximum pressure behavior, which is close to

the previous two trajectory-type behaviors. Pace and kinetic energy of the soft robots

are the next best behavior-types in the performance ladder. The worst behavior met-

ric regarding the fitness that is achieved is the number of voxels touching the ground

behavior.

The performance of novelty search when trajectories of the soft robots are used as a

behavior metric is superior over all other behavior metrics. Trajectories are a very

good selection for this kind of evolution since they can indirectly encode not only the

objective function which is the displacement, but also the locomotion strategy. The

reason why they achieve such a high performance is that novel behaviors in the space

of trajectories result in long trajectories which can be described novel. The rest of the

behavior metrics apart from VTG and VTG-DFT are close as far as the final performance

of the evolution is concerned. One reason they fail to meet the trajectories’ performance

is the fact that although they keep track of cues that can describe the performance of

the robot (speed/displacement), they cannot encode the direction of them. Soft robots

having a circle trajectory can produce fast locomotion, in this case though, the measured

displacement from their initial position remains low. Counting the number of voxels of

a soft robot that touched the ground in every sampling timestep of the simulation, does

not imply how fast the robot is moving. A fast moving robot that is hopping can have a

similar behavior with a hopping robot that stays in the same position after each jump.
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Figure 5.15: Best fitness so far with no competition, and local competition in the
complete population of each species for fitness search, averaged over 10 runs. (Set-
tings B.2)

On the contrary, using the trajectories of these two soft robots, the behaviors observed

would have been highly variant.

In the same figure (see Fig. 5.14) and on the left side of it (blue box), fitness based

search is also evaluated under the same experimental settings. The performance of this

objective optimization method is comparable only to the novelty search search when the

voxels touching the ground are the selected behavior metric. Apart from the effects of the

behavior selection another aspect of novelty search, the sparsity equation is investigated

in detail in Appendix D.

5.3 How Selection Affects the Performance of Both Search

Methods

Discussed extensively in a previous Chapter (see Sec. 2.1.1), selection is a process that

picks individuals in order to breed, be mutated, or be copied into the next generation.

It is the part of any evolutionary algorithm that is responsible for producing the next

generation based on the individuals which exist into the current one.
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Figure 5.16: Best fitness so far, local competition inside each species for novelty
search with generative encoding, averaged over 10 runs. (Settings B.1)

Fitness search

To discuss the effects selection method has in the specific evolutionary setting, compe-

tition is used in both fitness based and novelty search. Figure 5.15 presents the results

for two different selection methods, random selection from the top 20% (Blue) of the

population, and competition among individuals from the whole part of the current pop-

ulation (Red). The size of the competition used in this experiment was 4, meaning that

for every genome to be produced its parents will be the best genomes in respect to their

fitness value from 4-random picks within the current generation. Because the NEAT

method uses speciation (see Sec. 2.4.1), the competition is held among species. As it is

expected, competition and the fact that the whole population has the opportunity to

breed contribute to the diversity of the population. This can be easily seen in Figure 5.15

where random selection within the top 20% of the population does not allow solutions

to reproduce, meaning that it does not explore weaker individuals which may have the

potential to become better after a decent number of mutations or cross-overs with other

individuals. The deviation of the first method gives a perfect clue about how narrow

is the fitness landscape at the converged area of search when only the best solutions

survive on each generation.
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Novelty search

Since the algorithmic framework is the same for both search methods, competition can

also be used in novelty search. Figure 5.16 presents the results when competition is held

among individuals of the whole generation’s population within the same species. Com-

petition is held among individuals in respect to their global (when they are compared to

all novel solutions) and local (when they are only compared to their species’ population

of novel behaviors) novelty, red, and purple lines respectively. In both cases the overall

performance of the evolution averaged over 10 runs is worse than pure novelty search

method where individuals are selected randomly from the top-20% of the population.

Both selection methods, set aside an early gain in the evolution, are performing poorly

set when compared to the default selection method. Selecting individuals with high

novelty within the species is crucial for the reduced performance since these individu-

als can have low novelty value when compared with the global population leading to

steps backwards in the evolution towards novel individuals. On the other hand, when

individuals are competing using their global novelty measure leads to a slightly better

performance, still far from the default setting. On the contrary to the fitness based

method where competition achieved an improvement, competition within novelty search

was not successful.

Competition allows individuals to breed although they are not in the top part of the

population in respect to an evaluation measure. For fitness based search this means that

soft robots with low displacement will be allowed to breed and some of them eventually

will become better. For novelty search, it is less probable that behaviors with low novelty

(behaviors located in a dense area of observed behaviors) will contribute in generating

novel behaviors in future generations. Hence, allowing low novelty solutions to survive

harms the performance of novelty search.

5.4 Incorporate Fitness Information into Novelty Search

The reason that novelty search is considered such a revolutionary search method is

because it finds solutions for deceptive problems, where the fitness landscape is not a

straightforward function. What makes it so unique is the fact that instead of looking

for optimizing the solutions in respect to an objective function is looking for the novelty

in the behavior space. On each generation of novelty search novel behaviors that are

also fit in regards to the objective of the problem are discovered. Mutations of these

solutions will yield in behaving similarly to their ancestors, resulting in similar behaviors.

Thus, the novelty value of these individuals will be declined as similar behaviors will
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contribute in a denser area in the behavior space. Eventually these solutions will stop

being selected, and evolution will not have the chance of carrying their valuable genes

along. Mutations and other genetic operations can optimize these fit individuals more.

These individuals (with high fitness value) can be seen as stepping stones (Lehman and

Stanley, 2011a) towards more optimized versions of them. Being blind to the objective

function, novelty search will eventually stop producing new individuals out of them,

which will lead to promising individuals being unable to survive through the evolution

process.

Fitness-competition in novelty search

Competition is a simple way of combining these two search methods together. In this

experiment the number of new individuals each species will breed is determined by the

average novelty value of each species. However, competition is selecting these individuals

not in respect to their novelty but regarding their fitness value. After each generation

is produced, competition is held over all the population within each species to select

individuals for reproduction. Figure 5.16 illustrates the results of using the fitness of an

individual as a measure for selection among two generations. The resulted best fitness so

far (Green line) reveals that competition for fitness in a novelty search setting disturbs

the balance of the evolution towards novelty. Competition in respect to fitness is not

allowing novelty search to expand the search in the behavior space in a greater extend

since it is not the case that selected fit individuals will lead in novel behaviors.

Fitness-elitism in novelty search

It has been shown how selecting individuals in respect to their fitness by competition

leads to a declined performance for novelty search. Hence, an approach is proposed

for incorporating fitness information into novelty search without perturbing with its

pipeline. Elitism is the process of passing mutations or copies of the best individuals to

the next generation. In this way best individuals are preserved and can be optimized

later. The best individuals of each species generation are protected so they can con-

tribute with their beneficial genes later in the evolution. Novelty search can include

elitism in its selection process, and it does that by copying the most novel organisms

of the current population of each species to the next. Since there is no point of chang-

ing this function, elitism can be used also to copy fit individuals within novelty search

method. The way these two elitism functions can be combined together depends on the

population size and the problem, while probabilistic methods can also be used. In the

specific setting, both elitism function copy new individuals to the new generation with
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Figure 5.17: Best fitness so far, novelty search with and without copying fit champi-
ons, and fitness search, averaged over 10 runs. (Settings B.3)

probability one. Moreover, evolution towards novelty does not get disturbed, at the

same time fit individuals have the chance to be optimized further as long as they are

the fittest within the species population. Figure 5.17 illustrates the gain in performance

when fitness elitism is used in novelty search method compared with the pure novelty

and fitness based search methods.

In this section two ways of incorporating fitness information into novelty search method

investigated and discussed. Competition and elitism can be used within the pipeline

of novelty search in an evolutionary algorithm to use fitness information of individuals.

The latter achieved to an improvement over pure novelty search method.

5.5 Evolving Soft Robots for Outer Space

In this section, it is of interest to show how different environmental conditions can

affect both the performance and the type of locomotion produced by the evolved soft

robots. Both search methods discussed in this thesis, novelty and fitness based search,

are used for the co-evolution of the morphology and the locomotion strategy of soft

robots under variant gravity levels. Since the software used for the simulation of the

soft robots cannot fully reproduce the conditions of other planets/moons in our solar
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Figure 5.18: Novelty search performs better or equally good than fitness based search
in all gravity conditions tested. (Settings B.8)

system, the gravity acceleration of the environment is the only altered variable of the

simulation environment. For the novelty search method two-dimensional trajectories

of the soft bodies are chosen as the behavior metric to evaluate the novelty of each

individual. Due to the computationally expensive simulation for structures of resolution

103, the performance of the locomotion strategies evolved is measured in a smaller

lattice resolution 73 (10-runs for each gravity level for both methods). Settings used in

all previous experiments were also used for Jupiter’s and Earth’s gravity accelerations,

the simulation time used for both was 0.4 seconds. For Lunar’s and Mars’ evolution runs

a higher temperature period was used (0.050 instead of 0.025 seconds), in order effective

locomotion to take place. High frequencies tend not to allow soft body structures produce

any decent locomotion in lower gravity conditions. Furthermore, for the lower gravity of

Lunar and Mars, the simulation time was increased up to 1 second for each evaluation.

However, the final displacement of the robots was normalized to meet the expected

displacement for 0.4 seconds (the displacement of soft robots is roughly linear to time).

Figure 5.18 illustrates the performance of novelty and fitness based search in four differ-

ent gravity conditions for Lunar (−1.6 m/s2), Mars (−3.7 m/s2), Earth (−9.7 m/s2),

and Jupiter (−24.8 m/s2). The best fitness achieved by an individual averaged for all

runs are shown together with the deviation errors. Novelty search achieves in producing

better or equally good locomotion for the soft robots evolved in all gravity conditions.

The results on different settings verify that novelty search can indeed achieve higher

performance in the specific problem task.
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(a) 3-legged hopper (Fitness-Search)

(b) Triangle shaped hopper (Fitness-Search)

(c) L-shaped hopper (Novelty-Search)

(d) C-shaped hopper (Novelty-Search)

Figure 5.19: Lunar: Locomotion strategies evolved in low-gravity conditions of Lunar
consist mostly of hopper soft robots. (Settings B.4)

The rest of this section discusses in detail findings during the experiments in regards

to the evolved locomotion strategies and morphologies capable to produce efficient lo-

comotion. Although the measured performance of 10 evolution runs can give us a clear

estimate of what each method can achieve in respect to the expected displacement of

soft robots, the resolution of 73 is not high enough to unveil complex morphologies.

Three additional experiments were performed at a higher resolution (103), revealing

morphologies and locomotion strategies observed by the evolved soft robots. However,

the number of runs was not high enough to give a reliable estimate of the performance

with regards to the displacement of the soft robots.

5.5.1 Soft Robots on Lunar

Locomotion strategies evolved under low gravity conditions for the gravity of the Lunar

more specifically, showed that only hopping gaits can produce effective locomotion in

these conditions. Low gravity makes it difficult for the soft body structures to grip on

the ground surface and evolve something different than hopping. Figure 5.19 shows four

different types of hopper soft robots under Lunar’s gravity. However, the morphology

of each hopper differs. A 3-legged hopper (see Fig. 5.19a) uses its leg in the middle to

hop, stabilizing itself with the help of its front and back legs. One legged hoppers can be

evolved with different morphologies, a triangle shaped body (see Fig. 5.19b), L-shaped

(see Fig. 5.19c), and a C-shaped soft robot (see Fig. 5.19b). Hopper soft robots are

difficult to develop a stable locomotion strategy since most of the times the hopping

technique they use fails after few simulation seconds. Moreover, stable locomotion is

difficult to be evolved, since the evolution objective is the locomotion speed.
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(a) 2-legged galloping (Fitness-Search)

(b) 2-legged C-shaped hopper (Novelty-Search)

Figure 5.20: Mars: Gravity acceleration on Mars allows both galloping and hopping
locomotion strategies. (Settings B.5)

5.5.2 Soft Robots on Mars

The locomotion effectiveness on Mars is higher when is compared to this on Lunar’s

gravity acceleration making it possible for the virtual soft robots to evolve other kind

of gaits using legged bodies. Figure 5.20 presents two evolved virtual creatures where

the one is galloping having a two-legged body (see Fig. 5.20a), and the other is hopping

having a C-shaped soft body (see Fig. 5.20b). Note that the C-shaped hopper soft robot

mostly uses passive materials apart from its upper body where all the active material

are located. With using its upper part generates enough motion able to move itself.

What is observed in the morphologies of soft robots evolved in lower gravity levels was

that the use of less number of active voxels can produce decent locomotion.

5.5.3 Soft Robots on Earth

On higher gravity levels life-like locomotion emerges. Figure 5.21 shows three different lo-

comotion strategies generated by fitness based and novelty search on gravity conditions

of Earth. Galloping-type locomotion is again observed by evolved two-legged shaped

body creatures (see Fig. 5.21a). Interesting animal-like gait has also been evolved (see

Fig. 5.21b) verifying the connection there is between gravity and the locomotion strate-

gies of living organisms evolving on Earth for thousands of years. Tumbleweed-like

locomotion (see Fig. 5.21c) has been emerged under novelty search method producing

rolling soft robots that can locomote efficiently. Fact that adds significance to the nov-

elty search method since fitness based search did not produce this kind of locomotion

strategy. Tumbleweed is a concept of low-cost exploration that has inspired robot de-

signers for Mars’ missions in the past (Antol et al., 2003) and has been already deployed

in Antarctica for testing purposes by NASA.
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(a) Top view, 2-legged galloping (Fitness-Search)

(b) Top view, 4-legged animal like locomotion (Fitness-Search)

(c) Tumbleweed-like locomotion (Novelty-Search)

Figure 5.21: Earth: Morphologies evolved in gravity conditions on Earth show that
life-like locomotion strategies can be generated by soft body creatures in a simulated
environment. (Settings B.6)

5.5.4 Soft Robots on Jupiter

Moving on to higher gravity levels, Jupiter, heavier structures can use galloping as

a strategy for their locomotion. Figure 5.22 presents some of the locomotion types

when novelty and fitness based search were used for the evolution of them. Galloping

(see Fig. 5.22a) is again considered to be an effective way of moving in such a high

gravity, whereas thicker legs are evolved to withstand the high gravitational force. Push-

pull worm-like locomotion (see Fig. 5.22b) can also produce decent velocities for soft

robots. Finally, hoppers have also been evolved to this setting, while they are using

more actuated materials.

Different locomotion strategies can be evolved on different gravity levels producing ef-

fective locomotion. Low gravity does not allow other kinds of locomotion apart from

hoppers to be evolved, while higher gravity acceleration allows more complicated behav-

iors to be evolved. In all settings, both search methods produced effective locomotion for

the soft body structures, however, the performance in regard to the objective measure

defined, displacement of the body in body lengths, was equal or higher for novelty search

in all gravity settings.
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(a) 2-legged walking (Fitness-Search)

(b) Push-pull locomotion (Fitness-Search)

(c) C-shaped hopper (Novelty-Search)

Figure 5.22: Jupiter: Heavier structures on Jupiter’s gravity level can locomote
efficiently using several strategies. (Settings B.7)



Chapter 6

Conclusion

In this chapter the contributions of this thesis are discussed. The simultaneous evolu-

tion of morphology and locomotion strategy of soft robots by novelty search has been

investigated in depth.

Neuroevolution of augmented topologies evolutionary algorithm was used to evolve com-

positional pattern-producing networks, as the chromosome representation. CPPNs can

be queried for the lattice dimension of VoxCad simulation software and output not only

the morphology but also the distribution of materials in the structure of a soft robot,

determining the locomotion strategy that will be generated. The merits of using a gen-

erative encoding scheme like CPPNs were shown, where regular patterns in the output

of these artificial networks exploited the properties of the problem task. This generative

encoding showed its advantages in the case that random selection used in the evolution,

whereas random generated soft robots and direct-encoded soft robots could not produce

any decent locomotion strategy.

For the first time in evolutionary soft robotics a diversity based method such as nov-

elty search was used, resulting in an unexpected and valuable scientific result. Novelty

search method outperformed traditional fitness based search in evolving soft robots mor-

phologies that can move fast in a virtual environment. Both techniques compared under

the same objective function which was the normalized by body-length displacement of

soft robots within a fixed time-span. All the experiments presented throughout this

thesis proved that the search towards the above evaluation metric mentioned was not

as successful as deploying novelty search at the exact same settings, driving the search

towards a diversity in the behavior level. The resulted performance of novelty search

method in this setting showed that seeking for diversity in the behavior space can re-

sult in an improved performance in the fitness metric, which metric traditional methods

optimize their population for. The effect that behavior selection has in the evolution of

69
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the morphology and the effectiveness of locomotion strategy of soft body structures was

investigated in detail. Several behavior metrics designed and deployed in novelty search

showing the performance difference when each one was used to define the behavior space.

Moreover, it was shown that a good behavior metric must contain information about the

objective function which is subject to the optimization of the problem task. Previous

work in evolving virtual creatures by novelty search (Lehman and Stanley, 2011b) used

the resulted morphology of the robots created to determine the novelty of an individual.

The resulted performance for pure novelty search method was worse than the fitness

based. Here, we verified that novelty search cannot perform equally good or better to

fitness based search when the objective function is not well defined. On the contrary,

well defined behavior metrics can lead novelty search to outperform traditional fitness

based search in these settings. The obtained diversity in the phenotype level, and the

role of sparsity were also investigated. Novelty search not only improved the perfor-

mance and the diversity in the behavior space, but also contributed to the larger variety

of virtual creatures evolved.

Additionally, different selection techniques used in both novelty and fitness based search,

followed by a discussion on how this intermediate step in an evolutionary process can

influence both search methods. The performance of fitness based search was improved

when competition was chosen as an intermediate step between generations. Competing

individual in regards to their fitness value allowed the evolution to exploit the fitness

landscape better than in the pure fitness method. In addition, competition was used

in novelty search method, where competition in respect to global and local novelty

between each species disturbed the properties of the novelty search method, resulting in

worse performance than the pure novelty search. Competition within novelty search was

applied in regards to the fitness of the individual solutions. Once again, this method was

not as good as the pure method. Another method of incorporating fitness information

in novelty search was also proposed resulting in a significant performance gain over pure

novelty search method. This was achieved through fitness elitism. Most fit individuals

are passed through generations carrying their valuable genes and giving the chance to

the evolution to benefit from the mutations or the crossovers with these fit solutions in

future generations.

Finally, both techniques were used to evolve soft robots in four variant gravity lev-

els, showing interesting results and the possibility of influencing future robotic designs

for planetary exploration. Experiments under these gravity levels verified that novelty

search is indeed performing better than fitness based search in the evolution towards

high-velocity soft robots in this setting. In addition, some interesting characteristics

of evolved locomotion strategies under variant gravity condition were also observed,

adding knowledge and more possibilities when the gait of a soft robot under low or high
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gravity is considered. With the progress three-dimensional printing is showing, future

space missions can benefit from low cost soft robot explorers evolved to produce effi-

cient locomotion. Passive locomotion can add more value to these soft body structures,

where environmental variable conditions can actuate certain material types to produce

locomotion.

Novelty search achieved higher performance in all settings used over fitness based search.

However, assumptions about its generalized performance in evolving the morphology

and the locomotion strategy of soft robots out of the simulation software used cannot

be made.

6.1 Future Work

This section discusses possible future research that can be done in the topics approached

and the contributions of this thesis. Designing soft body structures in a simulated

environment is a heavy task for designers (Cheney et al., 2013), evolutionary algo-

rithms (Stanley and Miikkulainen, 2002) and generative encoding (Stanley, 2007) com-

bined, succeeded in the evolution of these designs, as well as the coordination (distribu-

tion of materials) of the structures evolved. What follows in this chapter is points worth

further investigation in the science of evolutionary soft robotics, still in a simulated

environment.

Evolution of materials

The scope of this thesis included the evolution of soft robots morphologies given a set

of predefined materials with specific properties. The reason behind this, is the fact that

it is was only of interest to investigate ways of designing soft robots having specific

materials as building blocks. Another aspect in the evolution of the morphology of soft

robot bodies is the evolution of the materials alongside the structure. The possibility of

a dynamic palette of materials will enable more complex gaits for the soft robots evolved.

Using the same generative encoding, material properties can be added as output nodes

in the genotype representation (CPPN), resulting in a palette of materials which size is

the same as the number of voxels presented in the evolved structure. Another possible

way of evolving these properties could be that two genotypes can represent the same

individual following two different encoding schemes. Direct encoding can be used for

the material properties, whereas, mutations and crossovers will then only be held among

genotypes of the same type.
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Novelty search

Incorporating fitness information into novelty search proved to be profitable for this

diversity rewarding search, adopting some of the advantages of fitness based search

. Fit individuals can be selected at the selection process resulting to their ability to

survive throughout the generations and be able to optimize their chromosome further.

Although, a method that achieved in a significant gain over pure novelty search method

was proposed, more ways of using genetic selection techniques can be used to achieve

similar results.

As far as behaviors are concerned, a limited behavior space can benefit the search for

novelty. Defining a valid behavior space and rewarding only behaviors within the valid

space for their novelty. This technique used in (Lehman and Stanley, 2011a) is called

Minimal Criteria Novelty Search and it is a way of making the behavior space more

compact so only “good” behaviors are rewarded for their novelty. Doing so, novelty

search incorporates indirectly further fitness information. In this thesis, the space of be-

haviors was only normalized for trajectories of the robot bodies, whereas the orientation

of their displacement had no role to the novelty search. A limited trajectory space could

only take into consideration straight trajectories treating all others as invalid behaviors

and thus, not rewarding the individuals from which the trajectories were observed. It

is expected that this type of novelty search will result in better solutions (Lehman and

Stanley, 2011a) as the diversity of locomotion patterns will only appeal to the strategy

and not the direction. It would be very interesting to see how minimal criteria novelty

search could perform in this setting.

Objective function in the evolution of soft robot locomotion

The objective function defined by previous work (Cheney et al., 2013) and used through-

out this thesis is the normalized displacement of the soft robot bodies within a limited

time-span. Optimizing morphologies to achieve the highest displacement possible is re-

sulting to emerged morphologies that are able to move fast but not stable enough to

be considered good. An objective function that could contain information about the

stability of the soft robots would have been crucial to the evolution towards more stable

gaits. Furthermore, this stability measure would have been important in the evolution

of locomotion strategy in lower gravity condition where hopping gaits were not stable.
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Appendix A

Simulation Settings

A.1 Environment

Settings used in the VoxCad simulation environment are given in table A.1.

Table A.1: Voxelyze simulation settings

Property Value Description

DtFrac 0.9 The timestep of the simulation, currently 0.9 × dt,
where dt is the optimal timestep.

ColSystem 3 Hierarchical collision detection between all voxels. Up-
dates potential collision list only when aggregated mo-
tion requires it1

StopConditionValue 0.4 Time in seconds simulation is stopped.
TempBase 25.0 Base temperature of the environment.
TempAmp 39.0 Temperature’s amplitude of the environment.
TempPeriod 0.025 Period of the temperature cycle.
VoxelDim 0.001 Voxel dimensions, each voxel has length, height, and

depth of 1mm.

A.2 Materials

In this section all materials’ properties used during the simulations will be given. All

materials used in the simulations have a set of shared properties which are shown in ta-

ble A.2. Furthermore, unique characteristics of the materials are presented in table A.3.

1From VoxCad’s documentation (Hiller and Lipson, 2012a).
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Table A.2: Universal material properties

Property Value Description

Poisson’s ratio 0.35 It is the ratio of expansion over two other
axes following the compression in one.

Density 1× 106 Kg/m3 Density of material.
Temp phase 0 Phase of material to temperature period.
Static friction coef. 1 Static friction coefficient.
Dynamic friction coef. 0.5 Dynamic friction coefficient.

Table A.3: Unique per material properties

Name Color Elastic Modulus (MPa) CTE (1/deg C)

Active positive (+) Red 10 +0.01
Active negative (-) Green 10 -0.01
Passive soft Cyan 10 0.00
Passive hard Blue 50 0.00



Appendix B

Experimental Settings

In this section the settings used for each experiment will be presented. For all the

following experimental constants the simulation and material settings used are the ones

described above, in case of other settings used, the new settings will be mentioned.

B.1 Lattice dimension 53

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Gravity acceleration −27.6 m/s2

Voxel dimensions 1mm× 1mm× 1mm

Lattice dimensions 5mm× 5mm× 5mm

B.2 Lattice dimension 73

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Gravity acceleration −27.6 m/s2

Voxel dimensions 1mm× 1mm× 1mm

Lattice dimensions 7mm× 7mm× 7mm
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B.3 Lattice dimension 103

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Gravity acceleration −27.6 m/s2

Voxel dimensions 1mm× 1mm× 1mm

Lattice dimensions 10mm× 10mm× 10mm

B.4 Lattice dimension 103-Lunar

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Gravity acceleration −1.622 m/s2

Voxel dimensions 1mm× 1mm× 1mm

Lattice dimensions 10mm× 10mm× 10mm

B.5 Lattice dimension 103-Mars

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Gravity acceleration −3.711 m/s2

Voxel dimensions 1mm× 1mm× 1mm

Lattice dimensions 10mm× 10mm× 10mm

B.6 Lattice dimension 103-Earth

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Gravity acceleration −9.780 m/s2

Voxel dimensions 1mm× 1mm× 1mm

Lattice dimensions 10mm× 10mm× 10mm
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B.7 Lattice dimension 103-Jupiter

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Gravity acceleration −24.790 m/s2

Voxel dimensions 1mm× 1mm× 1mm

Lattice dimensions 10mm× 10mm× 10mm

B.8 Gravity Experiments

Objective function Displacement in body lengths (displacement divided by size of soft robot)

of soft robot’s center of mass.

Table B.1: Unique per material properties

Planet Dim. Grav. (m/s2) Sim. Time (Secs.) Temp. Period (secs.)

Lunar 73 -1.622 1.0 0.050
Mars 73 -3.711 1.0 0.050
Earth 73 -9.780 0.4 0.025
Jupiter 73 -24.790 0.4 0.025





Appendix C

Evolution Settings

Table C.1, presents the settings used in the evolutionary algorithm (CPPN-NEAT),

the size of the population and the maximum number of generations are selected to

match (Cheney et al., 2013) for comparison purposes. The size of the competition

used in the some experiment is 4. For novelty search, the nearest neighbor sparsity

equation was used for the 10-closest neighbor behaviors, at the same time the threshold

in all novelty search experiments used was tuned so ∼ 0.8 behaviors per generation are

generated.
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Table C.1: CPPN-NEAT settings

Property Value

PopulationSize 30.0
MaxGenerations 1000.0
DisjointCoefficient 2.0
ExcessCoefficient 2.0
WeightDifferenceCoefficient 1.0
CompatibilityThreshold 6.0
CompatibilityModifier 0.3
SpeciesSizeTarget 8.0
DropoffAge 15.0
AgeSignificance 1.0
SurvivalThreshold 0.2
MutateAddNodeProbability 0.03
MutateAddLinkProbability 0.05
MutateLinkWeightsProbability 0.8
MutateOnlyProbability 0.25
MutateLinkProbability 0.1
SmallestSpeciesSizeWithElitism 5.0
MutationPower 2.5
AdultLinkAge 18.0
ForceCopyGenerationChampion 1.0
GenerationDumpModulo 1.0
ExtraActivationFunctions 1.0
SignedActivation 1.0
ExtraActivationUpdates 9.0



Appendix D

Additional Experiments

D.1 Sparsity in Novelty-Search

Sparsity (see Eq. 2.2) is a metric that evaluates how sparse is the space of a newly

generated-observed behavior. In this equation k defines how many of the closest neigh-

boring behaviors are going to be used for the computation of the average distance. Fig-

ure D.1 presents the resulted best fitness so far given different values for k ∈ {1, 2, 5, 10, 20}.
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Figure D.1: Best fitness so far averaged over 10 runs, for different k to sparsity
computation of the behavior. (Settings B.1)

83



Appendix C. Evolution Settings 84

In principle k can define how tolerate the algorithm can be with new behaviors. It is

not certain that a specific value for k should give the highest performance in fitness

and it depends almost completely by the application. The only implication in choosing

value for k is that choosing large values should yield in a more detailed exploration in

the behavior space. In the contrary, using small values the final set of behaviors will

be denser in the behavior space. In the specific figure using k = 10 was the number of

closest neighbors that led to the best performance.



Bibliography

Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of

development. Genetic programming and evolvable machines, 8(2):131–162, 2007.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the

search for novelty alone. Evolutionary computation, 19(2):189–223, 2011a.

Michael T Tolley, Robert F Shepherd, Bobak Mosadegh, Kevin C Galloway, Michael

Wehner, Michael Karpelson, Robert J Wood, and George M Whitesides. A resilient,

untethered soft robot. Soft Robotics.

Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pages 15–22. ACM, 1994.

Gregory S Hornby and Jordan B Pollack. Evolving l-systems to generate virtual crea-

tures. Computers & Graphics, 25(6):1041–1048, 2001.

Gregory S Hornby, Hod Lipson, and Jordan B Pollack. Generative representations for

the automated design of modular physical robots. Robotics and Automation, IEEE

Transactions on, 19(4):703–719, 2003.

Joshua E Auerbach and Josh C Bongard. Dynamic resolution in the co-evolution of mor-

phology and control. In Artificial Life XII: Proceedings of the Twelfth International

Conference on the Synthesis and Simulation of Living Systems, number EPFL-CONF-

191277, pages 451–458. MIT Press, 2010a.

Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution:

evolving soft robots with multiple materials and a powerful generative encoding. In

Proceeding of the fifteenth annual conference on Genetic and evolutionary computation

conference, pages 167–174. ACM, 2013.

John Rieffel, Davis Knox, Schuyler Smith, and Barry Trimmer. Growing and evolving

soft robots. Artificial life, 20(1):143–162, 2014.

85



Bibliography 86

Joel Lehman and Kenneth O Stanley. Evolving a diversity of virtual creatures through

novelty search and local competition. In Proceedings of the 13th annual conference on

Genetic and evolutionary computation, pages 211–218. ACM, 2011b.

David E Goldberg and John H Holland. Genetic algorithms and machine learning.

Machine learning, 3(2):95–99, 1988.

Stefano Nolfi and Dario Floreano. Evolutionary robotics. the biology, intelligence, and

technology of self-organizing machines. Technical report, MIT press, 2001.

Inman Harvey, Phil Husbands, Dave Cliff, Adrian Thompson, and Nick Jakobi. Evo-

lutionary robotics: the sussex approach. Robotics and autonomous systems, 20(2):

205–224, 1997.

Stefano Nolfi, Dario Floreano, Orazio Miglino, and Francesco Mondada. How to evolve

autonomous robots: Different approaches in evolutionary robotics. In Artificial life

IV: Proceedings of the 4th International Workshop on Artificial Life, number LIS-

CONF-1994-002, pages 190–197. MA: MIT Press, 1994.

Gillian M Hayes and John Demiris. A robot controller using learning by imitation.

University of Edinburgh, Department of Artificial Intelligence, 1994.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of behavior-based

robots using reinforcement learning. Artificial intelligence, 55(2):311–365, 1992.

Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use

of simulation in evolutionary robotics. In Advances in artificial life, pages 704–720.

Springer, 1995.

Jonathan D Hiller and Hod Lipson. Evolving amorphous robots. In ALIFE, pages

717–724, 2010.

Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. Developmental

robotics: a survey. Connection Science, 15(4):151–190, 2003.

Minoru Asada, Karl F MacDorman, Hiroshi Ishiguro, and Yasuo Kuniyoshi. Cognitive

developmental robotics as a new paradigm for the design of humanoid robots. Robotics

and Autonomous Systems, 37(2):185–193, 2001.

Juyang Weng. Developmental robotics: Theory and experiments. International Journal

of Humanoid Robotics, 1(02):199–236, 2004.

Minoru Asada, Koh Hosoda, Yasuo Kuniyoshi, Hiroshi Ishiguro, Toshio Inui, Yuichiro

Yoshikawa, Masaki Ogino, and Chisato Yoshida. Cognitive developmental robotics: a

survey. Autonomous Mental Development, IEEE Transactions on, 1(1):12–34, 2009.



Bibliography 87
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