
Orientation finding
using a grid based visual compass

Georgios Methenitis Patrick M. de Kok Sander Nugteren Arnoud Visser

University of Amsterdam, P.O. Box 94216, 1090 GE Amsterdam

Abstract
In this paper an extension of the model-based visual compass is presented, which can be updated contin-
uously, allowing a robot to orient itself in a changing environment. To build a model, colors in the image
are discretized to an automatically generated color profile, and transitions between these classes within
vertical lines are used as feature.

Experiments show how well a model can be learned at the center of field and how this model can
be extended to other location with a randomly walking robot. Finally, the strength of the approach is
demonstrated in a dynamic environment, where a good estimate of the orientation is maintained while the
surroundings are changed in a controlled way.

1 Introduction
Self-localization is an important part of robotics. This can be done by, for example, using an external
sensor, such as GPS. However, GPS is often not fine-grained enough and does not work indoors or in other
environments where reception is bad. Relying on motor odometry is unsuccessful in many cases as well.
A robot may move over slippery or rough terrain or it can bump into undetected obstacles, which both
influence the distance traversed with similar motor odometry. One way to solve this problem is to use
visual information, such as optical flow [2] or localizing based on predefined landmarks [3]. To counter the
problem of symmetrical maps in the last method, a visual compass can be used [1, 4, 5]. Such a method
estimates the robot’s heading by comparing the relative position of distant, automatically generated feature
points in its camera image over time.

Visual compass methods can be divided in model-free and model-based methods. Model-free meth-
ods [1, 4] compute the relative heading based on features occurring in recent images. The accumulation
of frame-to-frame motion errors are reduced heuristically. In specific situations an absolute heading can be
computed, for instance, when the robot’s pose is aligned in a known way with respect to another object.

A model-based visual compass, as presented by Sturm and Visser [5], first builds a cylindrical map of
visual features and stores it on the robot, which can then be used to find its absolute heading. This map is
usually made during an initialization period by making a full turn, but is not updated afterwards. The error
in the computed orientation increases when the robots moves away from the point where the cylindrical map
has been recorded, unless the found features are at a near infinite distance from the robot.

We present an extension of the heading-only localization method presented by Sturm and Visser, which
can also incorporate new measurements and measurements from other robots into its own map. Because the
map is updated during runtime, our method can account for slight changes in the environment. As it is a
visual compass to orientate accurately, even when moved from the original point of initialization and in a
slightly dynamic environment, the method is named ViCTOriA.

The remainder of this document is structured as follows. Section 2 explains the differences between
model-free and model-based visual compasses. In section 3 the deviations of our compass with the one it is



based on are presented; Sturm and Visser’s approach is summarized in section 3.1, section 3.2 presents the
storage structure of the features, the generation of features is described in section 3.3 and the online phase is
explained in section 3.4. Experimental results and a short discussion can be found in section 4. Future work
is discussed in section 5. Finally, section 6 serves as an epilogue to this article.

2 Background
Both model-free and model-based visual compasses have their uses. Because they do not keep track of
the environment for more than just a few frames, model-free visual compasses can be used in dynamic
environments and when the robot needs to explore areas of unknown size. In general there is no initialization
phase. However, when a big change in heading occurs such that the features from previous frames are not
observed anymore, for instance, due to drifting or the robot falling, model-free methods cannot estimate
the change in heading with respect to the previous estimate reliably. Another issue is the accumulation of
frame-to-frame motion error over time, although error reduction heuristics are proposed [1].

Typical model-based visual compasses build up a global map, in contrast with the local map of the
model-free approach. This global map can be used to estimate an absolute orientation, in contrast with a
relative orientation of the model-free approach. In general model-based visual compasses do not handle
dynamic environments well. The approach described in this study is an exception, because the map is
constantly updated.

A global map is typically learned during an initialization phase at a certain central point in the environ-
ment. When the robot moves away from that initialization point, gradually the confidence in the orientation
diminishes [5].

The RoboCup Soccer Standard Platform League (SPL) is an ideal testing environment (see figure 2) for
such visual compass, because the soccer game takes place in an area with a defined size and shape. In most
positions and orientations, the robot is able to recognize the features recorded in a cylindrical map during
an initialization phase. Because the robots bump into each other and fall quite often, the visual compass
method should be robust against big changes in orientation, which requires a method which delivers an
absolute estimate. The compass should also cope with a dynamic environment; the crowd watching the
game will move during a match.

The generation of a map should be quick; only 45 seconds are allowed for all robots in the game to move
from the sideline to their starting positions. After that, game time starts. Initialization should either happen

Figure 1: A game of the Dutch Nao Team at the 2013 RoboCup competition. Note the colorful surroundings.



in these 45 seconds or during game time, which increases risk of losing the early advantage.
Because of the limited processing power on the NAO, feature detection and feature matching should

be lightweight operations. Anderson et al. consider only a band of gray-scale pixels around the horizon
and propose a 1-dimensional version of SURF, which can be heavily optimized. Sturm and Visser extract
features from a limited number of vertical scan lines. The pixels are discretized into ‖C‖ = n clusters of
the most significant colors occurring in the images taken during the initialization phase. A bigram model of
color classes, containing the information how often a pixel from class c1 follows a pixel from class c2 with
c1, c2 ∈ C, per vertical scan line is used as feature.

3 The ViCTOriA Approach
ViCTOriA is by design split in two phases, an offline phase and an online phase. The offline phase corre-
sponds to the initialization phase of Sturm and Visser where an initial map is built by having the robot make
a turn of 360 degrees. A good point to build such a map is at the middle of the field, as the maximum distance
from a robot on the field is minimized. The robot ignores the field and only observes color patterns above the
horizon. The colors outside the field (such as advertisement boards and audience) will be observed, which
will result in an appropriate discretized color model.

The online phase includes the query and update mechanisms. The robot will query the system about its
orientation with features, and its location and previous orientation, and when the system is certain enough
about the new orientation estimate, it will update the appropriate map with the observed features.

When the online phase starts, the robot will initially rely heavily on the map at the center of the field.
While it is moving, the robot will add new features to its model and update existing features.

In the remainder of this section, a summary of the original approach is presented first. Following that,
the deviations of the ViCTOriA approach are presented.

3.1 Original approach
The ViCTOriA approach is an extension on the work done by Sturm and Visser. Note that that this study
was performed in a comparable environment (a soccer field), but with another robot (the four legged AIBO
robot). The processing pipeline of the original approach can be described as follows. First, the robot gathers
a set number of images while making a full turn. With a clustering method, such as the Expectation-
Maximization algorithm with a Gaussian mixture model [7], the robot autonomously clusters the colors into
the ‖C‖ = n most significant color classes. Every ψscan degrees of the field of view, a vertical line is
selected. The algorithm computes the frequencies of pixels of one color class followed by any other color
class. This process is depicted by figure 3. A discretized image together with the orientation metadata is
stored in the cylindrical map.

When querying the model, the authors use a Bayesian method where they optimize the probability
p(Ft|ψ,m) of an ordered sequence of features Ft given the camera’s yaw ψ and the cylindrical map m,
so as to optimize the data likelihood by choosing the correct angle.

Sturm and Visser combined the orientational belief filter with a translational belief filter into a localiza-
tion filter. This estimate could be combined with the location estimate based on landmarks, provided by a
particle filter which was part of the team’s framework [6]. The current framework has a localization method
based on an augmented Monte Carlo localization module [3].

3.2 Collection of compasses
To reduce the error that arises by moving away from the initialization point, the proposed model constantly
builds up a model for several visual compasses, distributed over the field. The field is divided into a grid, and
each grid has a number of angle bins. Each grid cell contains a feature buffer represented by the circle in the
middle of each cell. For positions outside of the field, the cell that is closest to the position is used. In this
3-dimensional object measurements are stored whenever it is applicable. The number of grid cells and the



number of angle bins in each buffer are configurable. For the purposes of our experiment and considering
the poor computational power of the NAO, ViCTOriA is configured with a 15-cell grid with 180 angle bins
in each cell. Figure 3.2 illustrates this layout, together with a NAO’s position and orientation.

Figure 2: The field is divided up into a grid. Initially, each grid cell represents an empty visual compass.
When the robot starts observing its environment, it will add features to the compass map of the grid cell it is
in. When a feature is stored, a small dash in the orientation of the corresponding angle bin will be attached
to the central circle in the robot’s current cell. The robot is represented by a small circle and dash, which
moves across the field (left from the center in this image).

3.3 Features
Not every scan line qualifies as a feature in the ViCTOriA approach. The field, its lines and other robots
do not contain interesting features to include in the map. Other robots might even harm the map’s quality,
as these observed robots are extremely dynamic and thus their features will not be observed at the same
position. Most of this noise occurs below the horizon, represented by a skew line in the image. If less
than 60% of the pixels in a frame are above the horizon, the frame is considered not informative enough,
and that frame is skipped. Otherwise, when the frame contains enough information, the scan lines will be
drawn perpendicular to the horizon towards the top of the image. By doing so the orientation of scan lines is
normalized. From every informative frame 10 scan lines are selected. As the camera has a horizontal field
of view of 60.97 degrees, this corresponds with taking a scan line every 6.097 degrees.

Images are provided in YUV422 color space. Our implementation uses k-means clustering instead of
the Expectation-Maximization algorithm with a Gaussian mixture model, as an implementation of this is
already provided in the SPL framework. Figure 3 shows an example of a discretized image after k-means
clustering with k = 8 has been performed on multiple images.

The feature extraction proceeds unchanged. However, the color transition matrices are normalized. A
scan line of n pixels contains n− 1 transitions, and thus each value in the matrix is divided by n− 1.

3.4 Querying and updating the model
The model can be queried by using a collection of features obtained from one image. As they are also
labeled with an angle and location, they can be looked up in the map. The equations used to compute the
certainty of a match are as follows:

sim(f1, f2) =
1

diff(lf1 , lf2)
× 1

diff(αf1 , αf2)
× 1

diff(f1, f2)
×m(f1)×m(f2)

m(f) = e(t−tf ) × p(lf )× p(αf )



Figure 3: Color transition matrix extraction process. Left: A discretized sample image from the Intelligent
Robotics Lab of the University of Amsterdam, discretized to 8 colors is shown, with one scan line illustrated
between the white lines. Right: A visualization of a color transition matrix. The left column and top row
represent the color classes. The other cells represent how often the row color is followed by the column
color in a scan line. Frequencies are visualized by shading; higher frequencies are dark colored, gamma
0, 25 is used to make differences visible enough.

The similarity measure between two features is computed using the distance between the two features
diff(pf1 , pf2), the difference in angle diff(αf1 , αf2), the difference of the features themselves diff(f1, f2)
and the measurement certainties of both features m(f1) and m(f2). These measurement certainties are
computed using the certainty of location p(lf ) and angle p(αf ) at the time of measurement, and e(t−tf ),
where t is the current time and tf is the time of measurement. This ensures that the reliability of features
over time will go down. The difference between each feature vector is computed, taking into consideration
that most frequent transitions are not so informative. For example, assume a white wall with a red horizontal
stripe of 1 pixel wide on it. The red stripe is more informative than the white wall. So, the color transition
frequencies are subtracted from one. By doing so, the pixels of the red stripe are weighed more than the
frequent ones. In this way, informative features play a more important role in the difference measure.

As the used framework’s localization module is multimodal, certainty about the robot’s position can be
expressed as the number of hypotheses, in a grid cell. Orientations are computed for grid cells containing
at least 20% of the hypotheses. This threshold is chosen, so that when the robot is near a crossing of four
cells, readings are still meaningful. This also allows for investigating the orientation when the localization
module is unsure about the field half the robot is on.

When similar enough matches have been found, the new features will be compared with the old features
already present in the cells, by computing m(fnew) and m(fold). If m(fnew) is greater than m(fold), the
cell’s old feature is replaced by the new feature.

4 Experiments
The first experiment tests the accuracy of the initialization phase, so the update mechanism of ViCTOriA
was disabled. The robot was placed exactly in the center of a field of 6× 4 meters for learning the map and
the significant colors for clustering. The grid was set to 15 cells with 180 angle bins per cell. To test the
learned model, the robot was placed in the same position and performed the same turn. However, now the
information provided from the augmented Monte Carlo localization module was not used, computing the
orientation only by the output of the visual compass. The information provided by this other localization
module is used as the ground truth, which is accurate especially in the turn motion. The average error that
the visual compass achieved was less than 0.10 radians. 357 of 390 frames have been used. 33 frames have
been skipped, as less than 60% of the observed pixels were above the horizon. In this experiment the training
set was very similar to the test set. The experiment could be further extended by changing the circumstances.



Figure 4: Left: The robot walks randomly over the soccer field. Its path according to the already im-
plemented augmented Monte Carlo localization module [3] is depicted as a series of circles and dashes,
representing its position and orientation, respectively. Right: After walking the random path, the robot
has learned to associate certain features with orientations and locations. This is shown as a dash in the
corresponding orientation at the center of the location’s corresponding grid cell.

However, this experiment gives an insight on an upper boundary of the accuracy of the orientation estimate.
The second experiment consists of an initialization phase and an application phase. The experiment tests

if during a soccer game enough information is collected to fill the visual compasses distributed over the field.
Figure 4 illustrates the update process of a randomly walking robot. The walking lasted for three minutes,
almost one third of a RoboCup Soccer SPL game period, which lasts ten minutes. On the left, the trace of
the robot poses during the walking are shown as they came from the augmented Monte Carlo localization
module. The robot started with an empty feature map, but the update process of ViCTOriA updated almost
70% of the map in these 5 cells where the robot walked. This is shown on the right of figure 4.

In a third experiment, ViCTOriA’s robustness to changes in the environment is tested. Ten full turns at
the center of the field have been recorded, where in each consecutive dataset an extra advertisement board
is visible in the environment. These boards have been randomly positioned around the field to represent the
random positioning of viewers during real games. No updates of the model have taken place. The model
has been trained on the center spot with either two, six, nine or ten boards on the field side. The boards are
placed within 50 cm of the field side. The average error in radians have been visualized in figure 5.

As can be expected, the average error is the lowest when tested on the same dataset as the model has
been trained on. In general, datasets with a similar amount of boards have lower errors than datasets with
a larger difference in the number of boards. So the method is quite insensitive for small changes in the
environment. Yet, the worst average error occurred when the environment was changed quite drastically;
the difference between 2 or 6 advertisement boards is a change of the appearance of half the horizon. The
resulting worst average error of 0.41 radians is still a useful estimate within RoboCup Soccer; robots mainly
need to distinguish their own goal from the opponent’s (which has a threshold of 1.57 radians).

5 Future work
The current implementation uses color transition matrices as its features, but there are other alternatives, such
as the 1D SURF used by Anderson et al. [1], or texture based features. Performance could be compared in
lab environments and at RoboCup events.

It is also possible to extend this framework in a multi-agent setting. Robots can benefit from each other’s
observations (features), just by broadcasting messages with features among them. In this way, communica-
tion can be used to achieve a faster adaptation to the environment (update the map in multiple locations at



1 2 3 4 5 6 7 8 9 10
Number of boards in test set

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
ve

ra
ge

er
ro

r(
ra

d)

Trained on 2
Trained on 6
Trained on 9
Trained on 10

Figure 5: Average error in radians. ViCTOriA has been trained only on its center grid cell with either two,
six, nine or ten advertisement boards on the field side, and tested with one to ten advertisement boards on
the field side.

the same time). For this to work color transition independence between different cameras is a requirement.
As it is illustrated in figure 6, the summed histograms for each of the three color channels of YUV422, show
that the same color clustering method can be used with independently calibrated cameras with the same
results.

Another point of improvement for an exploration scenario would be to perhaps change the grid cell
size dynamically, or find a procedure to fuse grid cells that are similar. This is useful when the size of
the environment is unknown, or when certain areas of the map might be less interesting than others. For
example, a large open room with few different features could do with less grid cells than a room with many
obstructions in the field of view.

Currently, the horizon is used to determine when an image frame is appropriate and contains enough
information above the field to perform the extraction of scan lines. For soccer and other environments where
the floor contains too few features for orientational localization, a floor detector can be implemented, and all
pixels above the floor polygon should be considered.

And finally, as the grid map that is constructed is essentially a storage of observations, this method
could also be used with other localization methods to improve the certainty of not only orientation but also
location.

0 50 100 150 200 250
Intensity of Y channel

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

camera 2
camera 3
camera 6
camera 7
camera 9
camera 10

0 50 100 150 200 250
Intensity of U channel

0

5000

10000

15000

20000

25000

30000

35000

Fr
eq

ue
nc

y

camera 2
camera 3
camera 6
camera 7
camera 9
camera 10

0 50 100 150 200 250
Intensity of V channel

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Fr
eq

ue
nc

y

camera 2
camera 3
camera 6
camera 7
camera 9
camera 10

Figure 6: Frequencies of pixel values for the Y (left), U (center) and V (right) channels for four images
taken with the lower camera on six different NAO heads. Preliminary experiments seem to indicate that the
frequency patterns are shifted. This shift might be due to different the difference in automatically set white
balance.



6 Conclusion
In this paper, a novel approach of the model-based visual compass is presented. It maintains several visual
compasses in a grid. This map can be built up in a relatively short time, using only one robot. The method
is robust against drastic changes in the environment, in the worst case resulting in an error of 0.41 radians,
which is enough to discriminate in a soccer match between the own goal and the goal of the opponent.

References
[1] Peter Anderson, Yongki Yusmanthia, Bernhard Hengst, and Arcot Sowmya. Robot localisation using

natural landmarks. In RoboCup 2010: Robot Soccer World Cup XVI, volume 7500 of Lecture Notes on
Artificial Intelligence series, pages 118–129. Springer, June 2013.

[2] Andrea Giachetti, Marco Campani, and Vincent Torre. The use of optical flow for road navigation. IEEE
Transactions on Robotics and Automation, 14(1):34–48, 1998.

[3] Amogh Gudi, Patrick de Kok, Georgios K Methenitis, and Nikolaas Steenbergen. Feature detection and
localization for the RoboCup Soccer SPL. Project report, Universiteit van Amsterdam, February 2013.

[4] Frédéric Labrosse. Visual compass. In Proceedings of Towards Autonomous Robotic Systems, University
of Essex, Colchester, UK, pages 85–92, 2004.

[5] Jürgen Sturm and Arnoud Visser. An appearance-based visual compass for mobile robots. Robotics and
Autonomous Systems, 57(5):536–545, 2009.

[6] Jürgen Sturm, Arnoud Visser, and Niek Wijngaards. Dutch aibo team: Technical report robocup 2005.
Technical Report, Dutch Aibo Team, October 2005.

[7] Jakob Verbeek. Mixture models for clustering and dimension reduction. PhD thesis, Universiteit van
Amsterdam, 2004.


	Introduction
	Background
	The ViCTOriA Approach
	Original approach
	Collection of compasses
	Features
	Querying and updating the model

	Experiments
	Future work
	Conclusion

