
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Player Behavior and Team Strategy
for the RoboCup 3D Simulation League

Georgios Methenitis

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)
Assistant Professor Georgios Chalkiadakis (ECE)

Professor Minos Garofalakis (ECE)

Chania, August 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Georgios Methenitis ii August 2012

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Συμπεριφορά Παικτών και Στρατηγική Ομάδας

για το Πρωτάθλημα RoboCup 3D Simulation

Γεώργιος Μεθενίτης

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Γεώργιος Χαλκιαδάκης (ΗΜΜΥ)

Καθηγητής Μίνως Γαροφαλάκης (ΗΜΜΥ)

Χανιά, Αύγουστος 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Georgios Methenitis iv August 2012

Abstract

Any team participating in a team sport requires both individual and team skills in order
to be successful. For human teams, these skills are inherent and naturally improve over
time. However, for robot teams these skills must be programmed by the designers of the
team. Robotic soccer, known as RoboCup, represents a complex, stochastic, real-time,
multi-agent, competitive domain. In such domains, team skills are as important as in-
dividual player skills, considering that in soccer simulation leagues there are up to 9 or
11 players per team. This thesis presents a complete team design for the RoboCup 3D
Simulation League focusing on player behavior, team strategy, and team coordination.
Our agents are designed in a way that enables them to act effectively both autonomously
and as members of the team. Initially, the development of the individual player skills is
described. These skills include robust self localization and object tracking, effective loco-
motion and soccer motions, basic and complex action execution, and communication with
teammates. Subsequently, a hierarchical coordination protocol is described, which coor-
dinates all the individual player skills yielding a complete behavior for each agent within
the frame of a global team strategy. Our approach is based on first sharing and fusing
information about the game state and then decomposing the global coordination prob-
lem for the 9 or 11 players to smaller coordination problems over dynamically-determined
subsets of players adhering to an adaptive global team formation. An exhaustive algo-
rithm is used over the most important subset of active players (the three ones closest
to the ball) to derive an optimal set of actions, whereas a less-expensive dynamic pro-
gramming algorithm is used over the remaining players (support players) to derive their
actions. Coordinated actions are evaluated through a function that combines costs re-
lated to positions, distances, potential collisions, and field coverage. Our approach and
our Java implementation enable the team to compute coordinated actions approximately
every two seconds yielding quick responsiveness to dynamically changing game states.
The results of complete games against existing teams, some of which compete for several
years in the RoboCup 3D Simulation League, reveal that our team is quite competitive
mostly thanks to the proposed coordination approach.

Georgios Methenitis vi August 2012

Περίληψη

Georgios Methenitis viii August 2012

Acknowledgements

First of all, I would like to thank my parents and my friends for all their support and
their encouragement.

Of course, I would like to thank my advisor Michail G. Lagoudakis for his help and the
trust that he showed to me from the first moment.

Georgios Methenitis x August 2012

Contents

1 Introduction 1
1.1 Thesis Contribution . 1
1.2 Thesis Outline . 2

2 The RoboCup Competition 3
2.1 RoboCup Soccer . 4
2.2 RoboCup Rescue . 7
2.3 RoboCup@Home . 10
2.4 RoboCup Junior . 10

3 RoboCup 3D Simulation League 13
3.1 SimSpark Soccer Simulator . 13
3.2 Robot Model . 14
3.3 Server . 15
3.4 Monitor . 16

3.4.1 SimSpark Monitor . 16
3.4.2 Roboviz Monitor . 17

3.5 Perceptors . 17
3.5.1 General perceptors . 18
3.5.2 Soccer perceptors . 19

3.6 Effectors . 21
3.6.1 General Effectors . 21
3.6.2 Soccer Effectors . 22

4 Player Skills 25
4.1 Agent Architecture . 25

Georgios Methenitis xi August 2012

CONTENTS

4.2 Connection . 26
4.3 Perceptions . 27
4.4 Localization . 28

4.4.1 Self Localization . 28
4.4.2 Object Localization . 29
4.4.3 Localization Filtering . 30

4.5 Motion . 33
4.5.1 XML-Based Motion Files . 34
4.5.2 XML-Based Motion Controller . 35
4.5.3 Text-Based Motion Files . 37
4.5.4 Text-Based Motion Controller . 38
4.5.5 Dynamic Motion Elements . 39

4.6 Actions . 40
4.6.1 Basic Actions . 40
4.6.2 Complex Actions . 42

4.7 Communication . 48

5 Team Coordination 51
5.1 Coordination Protocol . 51
5.2 Coordination Modes . 54
5.3 Coordination and Communication . 55
5.4 Coordination Beliefs Update . 58
5.5 Determination of Coordination Subsets 60
5.6 Soccer Field Utility Fuction . 61
5.7 Determination of Active Positions . 62
5.8 Active Players Coordination . 64
5.9 Team Formation Generation . 67
5.10 Team Roles Assignment . 72
5.11 Determination of Support Positions . 73
5.12 Support Players Coordination . 74
5.13 Goalkeeper Behavior . 77

6 Results 81
6.1 Motion . 81
6.2 Communication . 82

Georgios Methenitis xii August 2012

CONTENTS

6.3 Goalkeeper . 83
6.4 Coordination . 83
6.5 Games . 90

7 Related Work 93
7.1 UT Austin Villa . 93
7.2 BeeStanbul . 94
7.3 FUT-K_3D . 95
7.4 Farzanegan . 95

8 Conclusion 97
8.1 Future Work . 97

References 100

Georgios Methenitis xiii August 2012

CONTENTS

Georgios Methenitis xiv August 2012

List of Figures

2.1 Humanoid Kid, Teen, Adult -Size League at Robocup 2011. 4
2.2 Middle-Size League at RoboCup 2011. 5
2.3 Simulation League 2D (left) and 3D (right). 6
2.4 Small-Size League at RoboCup 2011. 6
2.5 Standard Platform League at RoboCup 2011. 7
2.6 Rescue Robot League at RoboCup 2011. 8
2.7 Rescue Simulation League at RoboCup 2006. 9
2.8 RoboCup@Home at RoboCup 2011. 10
2.9 Junior Soccer League at RoboCup 2011. 11

3.1 RoboCup 3D Simulation League Field 14
3.2 Rcssserver3d Simulated (left) and Aldebaran Real (right) Nao Robot Models. 15
3.3 Roboviz (left) vs SimSpark (right) Monitors. 17

4.1 The Agent Architecture. 26
4.2 Server and Agent Communication. 27
4.3 Nao’s Restricted Field of View and Field Landmarks. 29
4.4 Self-Localization Example with the F1R and G1R Landmarks. 30
4.5 Object (Ball and Opponent) Localization Example. 31
4.6 Nao’s Anatomy: Kinematic Chains and Joints. 33
4.7 XML-Based Motion Controller. 36
4.8 Phase Execution Sequence for a Typical XML-Based Motion. 37
4.9 Dynamic Walk Leaning: Left Leaning (left), Right Leaning (right). . . . 39
4.10 Dynamic Turn Gain: Turn Degrees (y-axis) against Gain Factor (x-axis). 40
4.11 Nao Performing a Kick after Positioning for Kick. 43
4.12 Obstacle Avoidance. 45

Georgios Methenitis xv August 2012

LIST OF FIGURES

4.13 Ground Distance between the Agent and the Ball. 46
4.14 On Ball Action Logic Flowchart. 47
4.15 Walk To Coordinate Action. 48
4.16 Time Slicing Communication Protocol. 49

5.1 The Coordination Protocol. 52
5.2 Communication Process in Coordination. 57
5.3 Global Ball Position Estimation from Multiple Ball Observations. 59
5.4 Coordination Splitter. 62
5.5 Soccer Field Value. 63
5.6 Initial Candidate Active Positions: Defense (left) and Offense (right). . . 64
5.7 Final Candidate Active Positions: Defense (left) and Offense (right). . . . 64
5.8 Collision Detection Feature in the Evaluation Function. 67
5.9 Template of Role Positions in the Team Formation for the 9-Players Version. 69
5.10 Template of Role Positions in the Team Formation for the 11-Players Version. 70
5.11 Role Positions in Team Formation for Various Ball Positions (in red). . . 71
5.12 Role Assignment Function for a Given Team Formation. 73
5.13 Determination of Support Positions from a Given Team Formation. . . . 74
5.14 Finite State Machine for the Goalkeeper Behavior. 78
5.15 Goalkeeper Behavior in the Guard State. 78
5.16 An Example of a Goalkeeper Fall to Prevent Opponents from Scoring. . . 79

6.1 Estimated Position of the Ball in Four Examples. 84
6.2 Offensive Positioning Resulting by Coordination Protocol, Example 1. . . 86
6.3 Defensive Positioning Resulting by Coordination Protocol, Example 1. . . 87
6.4 Defensive Positioning Resulting by Coordination Protocol, Example 2. . . 88
6.5 Formation Consistency Resulting by Coordination Process Via Team Roles

Assignment. 89

Georgios Methenitis xvi August 2012

List of Tables

5.1 Team Formation Description for the 9-Players Version 69
5.2 Team Formation Description for the 11-Players Version 70
5.3 Mappings Evaluated by the Support Players Mapping Algorithm. 77

6.1 Motion’s Performance Improvement (Averaged Speeds and Ranges) . . . 82
6.2 Communication Results in Ideal and Match Conditions 82
6.3 Goalkeeper Averaged Results in Half-Games. 83
6.4 All Played Games Results . 91
6.5 Mini Tournament (Tournament not completed yet) 92

Georgios Methenitis xvii August 2012

LIST OF TABLES

Georgios Methenitis xviii August 2012

List of Algorithms

1 Localization Filtering . 32
2 Escape Angle Set Calculation . 44
3 Coordination Protocol . 54
4 Active Players Optimal Mapping . 65
5 Support Players Mapping . 76

Georgios Methenitis xix August 2012

LIST OF ALGORITHMS

Georgios Methenitis xx August 2012

Chapter 1

Introduction

Any team participating in a team sport requires both individual and team skills in order
to be successful. For human teams, these skills are inherent and naturally improve over
time. However, for robot teams these skills must be programmed by the designers of
the team. Robotic soccer, known as RoboCup, represents a complex, stochastic, real-
time, multi-agent, competitive domain. In such domains, team skills are as important as
individual player skills, considering that in soccer simulation leagues there are up to 9 or
11 players per team.

1.1 Thesis Contribution

This thesis presents a complete team design for the RoboCup 3D Simulation League
focusing on player behavior, team strategy, and team coordination. Our agents are de-
signed in a way that enables them to act effectively both autonomously and as members
of the team. Initially, the development of the individual player skills is described. These
skills include robust self localization and object tracking, effective locomotion and soc-
cer motions, basic and complex action execution, and communication with teammates.
Subsequently, a hierarchical coordination protocol is described, which coordinates all the
individual player skills yielding a complete behavior for each agent within the frame of
a global team strategy. Our approach is based on first sharing and fusing information
about the game state and then decomposing the global coordination problem for the
9 or 11 players to smaller coordination problems over dynamically-determined subsets
of players adhering to an adaptive global team formation. An exhaustive algorithm is

Georgios Methenitis 1 August 2012

1. INTRODUCTION

used over the most important subset of active players (the three ones closest to the
ball) to derive an optimal set of actions, whereas a less-expensive dynamic programming
algorithm is used over the remaining players (support players) to derive their actions.
Coordinated actions are evaluated through a function that combines costs related to po-
sitions, distances, potential collisions, and field coverage. Our approach and our Java
implementation enable the team to compute coordinated actions approximately every
two seconds yielding quick responsiveness to dynamically changing game states. The re-
sults of complete games against existing teams, some of which compete for several years
in the RoboCup 3D Simulation League, reveal that our team is quite competitive mostly
thanks to the proposed coordination approach.

1.2 Thesis Outline

Chapter 2 provides some background information on the RoboCup competition. In Chap-
ter 3 we present the SimSpark simulation platform and the general framework of the
challenging RoboCup 3D Simulation League domain we are going to work on. Continu-
ing to Chapter 4, the core ideas, the architecture of our agents, and the individual player
behavior are presented. Moving on to Chapter 5, we present in detail our team strategy
and our coordination method over a custom communication protocol among the team
players. In Chapter 6 the results and the evaluation of our work are presented though
several experiments and test games. Chapter 7 presents similar systems developed by
other RoboCup teams including a brief comparison between those systems and ours. Fi-
nally, Chapter 8 serves as an epilogue to this thesis, including proposals on extending
and improving our framework and a discussion about the experience we gained from this
work.

Georgios Methenitis 2 August 2012

Chapter 2

The RoboCup Competition

RoboCup is an international robotics competition founded in 1997. The aim is to pro-
mote robotics, artificial intelligence, and machine learning research by offering a publicly
appealing, but formidable, challenge. The name RoboCup is a contraction of the compe-
tition’s full name, “Robot Soccer World Cup”. The official goal of the project is stated as
an ambitious endeavor: “By the year 2050, a team of fully autonomous humanoid robot
soccer players shall win the soccer game, complying with the official rule of the FIFA,
against the winner of the most recent World Cup” [2]. This endeavor may seem impos-
sible with today’s technology. I would say that a more realistic goal would be to make a
team of robots play soccer similarly, but not necessarily better, than humans. In any case,
the true goal is to push research efforts towards technological breakthroughs and will be
the one of the grand challenges shared by robotics and AI community for next 50 years.
RoboCup is an annual event in which lots of research teams around the world participate
in various leagues including RoboCupSoccer, RoboCup@Home, RoboCupRescue, and
RoboCupJunior, each of these leagues and its sub-leagues will be presented extensively
below. Participation in this annual event is growing year by year reaching in a number
of more than 400 teams from 40 countries around the world in RoboCup 2011 which
held in Istanbul, Turkey. The RoboCup competitions provide an excellent channel for
the dissemination and validation of innovative concepts and approaches for autonomous
robots and multi-robot systems under very challenging and adverse conditions.

Georgios Methenitis 3 August 2012

2. THE ROBOCUP COMPETITION

Figure 2.1: Humanoid Kid, Teen, Adult -Size League at Robocup 2011.

2.1 RoboCup Soccer

The main focus of the RoboCup competitions is the game of soccer, where the research
goals concern cooperative multi-robot systems in dynamic adversarial environments. All
robots in this league are fully autonomous. A competition which gives the possibility
of doing research in a more entertaining way. Moreover, we can realize that soccer is
selected due to the fact that it is a popular sport and widely spread throughout the
world. Moreover, rules governing it are also known. Robocup Soccer encompasses all the
known problems of artificial intelligence such as machine vision, perception, behavior and
cooperation which are of paramount importance in multi-agent environments like this.

Humanoid League

In the Humanoid League, autonomous robots with a human-like body and human-like
senses play soccer against each other. Dynamic walking, running, and kicking the ball
while maintaining balance, visual perception of the ball, other players, and the field,
self-localization, and team play are among the many research issues investigated in the
league. The league is divided into 3 subleagues, according to robot sizes: Teen, Kid and
Adult Size. Figure 2.1 shows these three size leagues.

Middle-Size League

Middle-sized wheeled robots of no more than 50 cm diameter play soccer in teams of up to
six robots with regular size FIFA soccer ball on a field similar to a scaled human soccer
field. All sensors are on-board. Robots can use wireless networking to communicate.

Georgios Methenitis 4 August 2012

2.1 RoboCup Soccer

Figure 2.2: Middle-Size League at RoboCup 2011.

The research focus is on full autonomy and cooperation at plan and perception levels.
Figure 2.2 shows a Middle-Size League’s game at RoboCup 2011.

Simulation League

This is one of the oldest leagues in RoboCup’s Soccer. The Simulation League focus on
artificial intelligence and team strategy. Independently moving software players (agents)
play soccer on a virtual field inside a computer. There are two subleagues: 2D and 3D.
Simulation league 3D is going to be presented extensively in the next chapter. Figure 2.3
shows how the 2D versus 3D simulation league looks like.

Small-Size League

The Small Size league or F180 league as it is otherwise known, is one of the oldest
RoboCup Soccer leagues. It focuses on the problem of intelligent multi-robot/agent coop-
eration and control in a highly dynamic environment with a hybrid centralized/distributed
system. The robot must fit within an 180mm diameter circle and must be no higher than
15cm. The robots play soccer with an orange golf ball on a green carpeted field that

Georgios Methenitis 5 August 2012

2. THE ROBOCUP COMPETITION

Figure 2.3: Simulation League 2D (left) and 3D (right).

Figure 2.4: Small-Size League at RoboCup 2011.

is 6.05m long by 4.05m wide. All objects on the field are tracked by a standardized

vision system that processes the data provided by two cameras that are attached to a

camera bar located 4m above the playing surface. The vision system called SSL-Vision.

Figure 2.4 shows a game during RoboCup competition in Istanbul, 2011.

Georgios Methenitis 6 August 2012

2.2 RoboCup Rescue

Figure 2.5: Standard Platform League at RoboCup 2011.

Standard Platform League

In this league all teams use same robots. Therefore, the teams concentrate on soft-
ware development only, while still using state-of-the-art robots. Directional vision forces
decision-making to trade vision resources for self-localization and ball localization. The
league is based on Aldebaran’As Nao humanoids. Team “Kouretes” [www.kouretes.gr]
from the Technical University of Crete is the only Greek representative in this league,
having continuous participation since 2006 and several distinctions. Figure 2.5 shows a
highlight of the Standard Platform League.

2.2 RoboCup Rescue

The intention of the RoboCup Rescue project is to promote research and development
in this socially significant domain at various levels involving multi-agent team work co-
ordination, physical robotic agents for search and rescue, information infrastructures,
personal digital assistants, a standard simulator and decision support systems, evalua-
tion benchmarks for rescue strategies and robotic systems that are all integrated into a

Georgios Methenitis 7 August 2012

www.kouretes.gr

2. THE ROBOCUP COMPETITION

Figure 2.6: Rescue Robot League at RoboCup 2011.

comprehensive systems in future.

Robot League

The goal of the urban search and rescue (USAR) robot competitions is to increase aware-
ness of the challenges involved in search and rescue applications, provide objective evalu-
ation of robotic implementations in representative environments, and promote collabora-
tion between researchers. It requires robots to demonstrate their capabilities in mobility,
sensory perception, planning, mapping, and practical operator interfaces, while search-
ing for simulated victims in unstructured environments. The RoboCupRescue arenas
constructed to host these competitions consist of emerging standard test methods for
emergency response robots developed by the U.S. National Institute of Standards and
Technology through the ASTM International Committee on Homeland Security Appli-
cations; Operational Equipment; Robots (E54.08.01). The competition field is divided
into color-coded arenas that form a continuum of challenges with increasing levels of
difficulty for robots and operators and highlight certain robotic capabilities. Greece
participates in this league (RoboCup 2008, 2009, 2011) with team “P.A.N.D.O.R.A”
[pandora.ee.auth.gr] based at the Aristotle University of Thessaloniki. Figure 2.6
shows a wheeled robot in RoboCupRescue robot competition.

Georgios Methenitis 8 August 2012

pandora.ee.auth.gr

2.2 RoboCup Rescue

Figure 2.7: Rescue Simulation League at RoboCup 2006.

Simulation League

The purpose of the RoboCup Rescue Simulation league is twofold. First, it aims to
develop simulators that form the infrastructure of the simulation system and emulate re-
alistic phenomena predominant in disasters. Second, it aims to develop intelligent agents
and robots that are given the capabilities of the main actors in a disaster response sce-
nario. The Virtual Robots Competition aims to be the meeting point between researchers
involved in the Agents Competition and those active in the RoboCupRescue League. It
is based on USARSim, a high fidelity simulator based on the UnrealTournament game
engine. USARSim currently features wheeled, tracked and legged robots, as well as a
wide range of sensors and actuators. Moreover, users can easily develop models of new
robotic platforms, sensors and test environments. Validation experiments have shown
close correlation between results obtained within USARSim and the corresponding real
robots. Figure 2.7 shows a wheeled robot in RoboCupRescue robot competition.

Georgios Methenitis 9 August 2012

2. THE ROBOCUP COMPETITION

Figure 2.8: RoboCup@Home at RoboCup 2011.

2.3 RoboCup@Home

The RoboCup@Home league aims to develop service and assistive robot technology with
high relevance to future personal domestic applications. It is the largest international
annual competition for autonomous service robots and is part of the RoboCup initiative.
A set of benchmark tests is used to evaluate the robots’ abilities and performance in a
realistic non-standardized home environment setting. Focus lies on, but is not limited
to, the following domains: Human-Robot Interaction and Cooperation, Navigation and
Mapping in Dynamic Environments, Computer Vision and Object Recognition under
Natural Light Conditions, Object Manipulation, Adaptive Behaviors, Behavior Integra-
tion, Ambient Intelligence, Standardization and System Integration.

2.4 RoboCup Junior

RoboCupJunior is a project-oriented educational initiative that sponsors local, regional
and international robotic events for young students. It is designed to introduce RoboCup

Georgios Methenitis 10 August 2012

2.4 RoboCup Junior

Figure 2.9: Junior Soccer League at RoboCup 2011.

to primary and secondary school children, as well as undergraduates who do not have
the resources to get involved in the senior leagues yet.

Soccer

2-on-2 teams of autonomous mobile robots play in a dynamic environment, tracking a
special light-emitting ball in an enclosed, landmarked field. Figure 2.9 shows Junior
Soccer League at RoboCup 2011.

Dance

One or more robots join human dancers and give a dance performance dressed in costume
and moving in creative harmony.

Rescue

Robots identify simulated victims within re-created disaster scenarios, varying in com-
plexity from line-following on a flat surface to negotiating paths through obstacles on
uneven terrain.

Georgios Methenitis 11 August 2012

2. THE ROBOCUP COMPETITION

Georgios Methenitis 12 August 2012

Chapter 3

RoboCup 3D Simulation League

The 3D Simulation League [3] increases the realism of the simulated environment used in
the 2D Simulation League by adding an extra dimension and more complex physics. At its
beginning, the only available robot model was a spherical agent. In 2006, a simple model
of the Fujitsu HOAP-2 robot was made available, being the first time that humanoid
models were used in the simulation league. This shifted the aim of the 3D Simulation
League from the design of strategic behaviors in playing soccer towards some low-level
control of humanoid robots and the creation of basic behaviors, like walking, kicking,
turning and standing up, among others.

In 2008, the introduction of a Nao robot model to the simulation gave another per-
spective to the league. The real Nao robot from Aldebaran robotics has been the official
robot for the Standard Platform League since 2008. Using the same model for the sim-
ulation competitions represents a great opportunity for researchers wanting to test their
algorithms and ideas before trying them into the real robots. The interest in the 3D
Simulation League is growing fast and research is slowly getting back to the design and
implementation of multi-agent higher-level behaviors based on solid low-level behavior ar-
chitectures for realistic humanoid robot teams. SimSpark is used as the official Robocup
3D simulator.

3.1 SimSpark Soccer Simulator

SimSpark [4] is a generic physics simulator system for multiple agents in three-dimensional
environments. It builds on the flexible Spark application framework. In comparison to

Georgios Methenitis 13 August 2012

3. ROBOCUP 3D SIMULATION LEAGUE

Figure 3.1: RoboCup 3D Simulation League Field

specialized simulators, users can create new simulations by using a scene description
language. SimSpark is a powerful tool to study different multi-agent research questions.

Rcssserver3d is the official competition environment for the RoboCup 3D Simulation
League. It implements a simulated soccer environment, whereby two teams of up to
nine, and in the latest version up to eleven, humanoid robots play against each other.
Figure 3.1 shows the dimensions and the layout of the simulated soccer field.

3.2 Robot Model

Rcssserver3d comes with the Nao robot model for use by the agents in the soccer simu-
lation. The physical specifications of each model is stored in an .rsg file.The real Nao
humanoid robot is manufactured by Aldebaran Robotics in Paris, France. Its height is
about 57cm and its weight is around 4.5kg. The simulated model comes with 22 degrees
of freedom, which allow Nao to have great mobility. Although, we are discussing about

Georgios Methenitis 14 August 2012

3.3 Server

Figure 3.2: Rcssserver3d Simulated (left) and Aldebaran Real (right) Nao Robot Models.

the same robot, there are significant differences between the real and the simulated Nao
robot. The real Nao comes with two cameras attached to its head in vertical alignment;
these two cameras cannot operate simultaneously, but only one at a time. It also has two
sonar devices on the chest, which are completely absent from the simulated Nao. The
real Nao comes with 21 degrees of freedom in contrast to 22 of the simulated Nao, be-
cause the two pelvis joints are coupled together and are not able to move independently.
In addition, two bumpers are positioned in front of the feet of the real Nao, providing
information about possible collisions; these are absent in the simulated model. Figure 3.2
shows a depiction of the Nao robot model within the into the Rcssserver3d simulation
environment along with the real one.

3.3 Server

The SimSpark server hosts the process that manages and advances the simulation. The
simulation state is constantly modified through the simulation update loop. Each sim-
ulation step corresponds to 20ms of simulated time. Objects in the scene change their
state, i.e. one or more of their properties, such as position, speed, angular velocity, etc.,

Georgios Methenitis 15 August 2012

3. ROBOCUP 3D SIMULATION LEAGUE

due to inherent or external influences. These properties are under the control of a rigid
body physical simulation that resolves collisions, applies drag, gravity, etc. Agents that
take part in the simulation also modify objects with the help of their effectors, which may
move and apply forces to other objects. SimSpark implements a simple internal event
model that immediately executes every action received from an agent.

Another responsibility of the server is to keep track of connected agent processes. The
SimSpark server exposes a network interface to all agents on TCP port 3100 (default
value). In each simulation cycle, the server collects and reports sensor information for
each of the sensors of all connected agents. It further carries out received action sequences
triggered by the connected agents through their available effectors. The server does not
try to compensate for network latencies or differences in computing resources available
to the connected agents. A consequence is that simulations are not reproducible. This
means repeated simulations may have a different outcome, depending on network delays
or load variations on the machines hosting the agents and the server.

3.4 Monitor

The server can render the simulation itself, depending on its configuration. It implements
an internal monitor that omits the network overhead. However, it supports streaming
data to remote monitor processes, which take responsibility for rendering the 3D scene
for remote viewing.

3.4.1 SimSpark Monitor

The SimSpark monitor is responsible for rendering the current simulation. It connects to
a running server instance from which it continuously receives a stream of updates that
describe the simulation state, either as full snapshots or as incremental updates. The
format of the data stream the server sends to the monitor is called Monitor Format. It is
a customizable language used to describe the simulation state in text format. Apart from
describing the pure simulation state, each Monitor Format may provide a mechanism to
transfer additional game-specific state. For the soccer simulation, this game-specific state
may include, for example, current play mode and goals scored so far. The monitor client
itself only renders the pure scene and defers the rendering of the game-specific state to

Georgios Methenitis 16 August 2012

3.5 Perceptors

Figure 3.3: Roboviz (left) vs SimSpark (right) Monitors.

plugins. These plugins are intended to parse the game-specific state and display it as an
overlay printed out on screen.

3.4.2 Roboviz Monitor

RoboViz [5] was created by Justin Stoecker in collaboration with the RoboCup group
(RoboCanes) at the University of Miami’s Department of Computer Science. RoboViz
is a software program designed to assess and debug agent behaviors in the RoboCup 3D
Simulation League. RoboViz is an interactive monitor that renders agent and world state
information in a three-dimensional scene. In addition, RoboViz provides programmable
drawing and debug functionality to agents that can communicate over a network. The
tool facilitates the real-time visualization of agents running concurrently on the SimSpark
simulator and provides higher-level analysis and visualization of agent behaviors not cur-
rently possible with existing tools. Figure 3.3 shows a visual comparison of the RoboViz
and SimSpark Monitors.

3.5 Perceptors

Perceptors are the senses of an agent, allowing awareness of the agent’s model state
and the environment. The server sends perceptor messages to connected agents via the
network protocol at each cycle of the simulation. There are both general perceptors
available in all simulations and soccer perceptors specific to the soccer simulation.

Georgios Methenitis 17 August 2012

3. ROBOCUP 3D SIMULATION LEAGUE

3.5.1 General perceptors

HingeJoint Perceptor A hinge joint perceptor receives information about the angle of
the corresponding single-axis hinge joint. It contains the identifier HJ, the name of
the perceptor, and the position angle of the axis in degrees. A zero angle corre-
sponds to straightly aligned bodies. The position angle of each hinge joint perceptor
is sent at each cycle. Each hinge joint has minimum and maximum limits on its
angular position. This varies from hinge to hinge and depends upon the model
being used. Nao has 22 hinge joint perceptors; this is the only joint type used in
this robot.

Message format: (HJ (n <name>) (ax <ax>))

Frequency: Every cycle

Noise Model: None, however values are truncated to two decimal places, which
is equivalent to a uniform error of up to 0.01 degrees.

ForceResistance Perceptor This perceptor informs about the force that acts on a
body. After the identifier FRP and the name of the body, the perceptor message
contains two three-dimensional vectors. The first vector describes the coordinates
of the point of origin on the body where the force is applied to (in meters) and
the second vector is the force vector (magnitude and direction) of the force applied
to this point (in Newtons). This information is just an approximation of the real
applied force. The point of origin is calculated as the weighted average of all contact
points to which force is applied, while the force vector represents the total force
applied to all of these contact points. The perceptor message for force resistance
perceptors is sent only in case of a collision of the corresponding body with another
simulated object. Nao has two of these perceptors, located below each foot and
named lf and rf.

Message format: (FRP (n <name>) (c <px> <py> <pz>) (f <fx> <fy> <fz>))

Frequency: Only in cycles where a body collision occurs

Noise Model: None, however values are truncated to two decimal places, which
is equivalent to a uniform error of up to 0.01 meters or Newtons.

Georgios Methenitis 18 August 2012

3.5 Perceptors

GyroRate Perceptor The gyro rate perceptor delivers information about the change
in orientation of a body. The message contains the GYR identifier, the name of the
body to which the gyro perceptor belongs to, and the rates of change of the three
rotation (Euler) angles. These values describe the rates of change in orientation
of the body during the last cycle, in other words the current angular velocities
about the three rotation axes of the corresponding body in degrees per second. To
enable keeping track of the orientation of the body, the information to each gyro
rate perceptor is sent at each cycle. Nao has one gyro perceptor in the upper torso.

Message format: (GYR (n <name>) (rt <x> <y> <z>))

Frequency: Every cycle

Noise Model: None, however values are truncated to two decimal places, which
is equivalent to a uniform error of up to 0.01 degrees.

Accelerometer Perceptor This perceptor measures the proper acceleration a body ex-
periences relative to free fall. As a consequence an accelerometer at rest relative
to the simulated earth’s surface will indicate an acceleration of approximately 1g
upwards. To obtain the acceleration due to motion with respect to the earth, this
gravity offset should be subtracted. After the identifier ACC and the name of the
body, the perceptor message contains a three-dimensional vector with the acceler-
ation values along the three Cartesian axes in m/s2. Nao has one accelerometer in
the upper torso.

Message format: (ACC (n <name>) (a <x> <y> <z>))

Frequency: Every cycle

Noise Model: None, however values are truncated to two decimal places, which
is equivalent to a uniform error of up to 0.01 m/s2.

3.5.2 Soccer perceptors

Vision Perceptor The most important perceptor of the Nao robot is the vision per-
ceptor, which delivers information about seen objects in the environment, where
objects are either others players, the ball, field lines, or markers on the field. Cur-
rently there are eight markers on the field: one at each corner point of the field

Georgios Methenitis 19 August 2012

3. ROBOCUP 3D SIMULATION LEAGUE

and one at each goal post. Each player has up to five visible body parts (two arms,
two legs, head). Each field line is characterized by two points (starting and ending
points). The perceptor message begins with the identifier See and for each visible
object it contains a vector described in spherical coordinates. In other words, it
contains the distance d (in meters) together with the horizontal a1 and vertical a2
angles (in degrees) to the center of the object relatively to the focal point of the
camera. Nao possesses a restricted vision perceptor at the center of its head. This
perceptor’s type is RestrictedVisionPerceptor, which limits the field of view to
120◦.

Message format: (See +(<name> (pol <d> <a1> <a2>))
+(P (team <name>) (id <ID>) +(<bodypart> (pol <d> <a1> <a2>)))
+(L (pol <d> <a1> <a2>)(pol <d> <a1> <a2>)))

Frequency: Every third cycle (60ms)

Noise Model: Calibration error (a fixed offset of around±0.004m in each of x/y/z
axes), zero-mean Gaussian noise, and values truncated to two decimal places,
which is equivalent to a uniform error of up to 0.01 meters or degrees.

Hear Perceptor The agent processes are not allowed to communicate with each other
directly, but the agents may exchange messages via the simulation server. For this
purpose agents are equipped with the so-called hear perceptor, which serves as an
aural sensor and receives messages shouted by other players. A hear perceptor
message begins with the hear identifier, followed by the simulation time at which
the given message was heard in seconds, either a relative horizontal direction in
degrees indicating where the sound originated or self indicating that the player is
hearing their own shouted message, and finally the message itself in plain ASCII text
(parentheses cannot be part of the message). Messages should not have a length of
more than 20 ASCII characters. Messages shouted from beyond a maximal distance
(currently 50 meters) cannot be heard. Most important restriction is that only one
message can be heard at any given time and messages from the same team can be
heard only every other cycle. All unheard messages are lost. Thus, the maximum
communication bandwidth is 20 ASCII characters every 40ms.

Message format: (hear <time> self/<direction> <message>)

Georgios Methenitis 20 August 2012

3.6 Effectors

Frequency: Only in cycles, where a message is heard

GameState Perceptor The game state perceptor delivers information about the ac-
tual state of the soccer game environment. A game state message begins with
the GS identifier, followed by two pieces of game state information: the actual
play time and the current play mode (BeforeKickOff, PlayOn, KickOff_Left,
KickOff_Right, GoalLeft, GoalRight, corner_kick_left, corner_kick_right,
KickInLeft, KickInRight, goal_kick_left, goal_kick_right). Play time starts
at 0 at the kickoff of the first half and at 300 at the kickoff of the second half and
is given in seconds with a precision of two decimal places.

Message format: (GS (t <time>) (pm <playmode>))

Frequency: Every cycle

3.6 Effectors

Effectors allow agents to perform actions within the simulation. Agents control them
by sending messages to the server and the server changes the game state accordingly.
Effector control messages are sent via the network protocol. There are both general
effectors that apply to all simulations, and soccer effectors that are specific to the soccer
simulation.

3.6.1 General Effectors

Create Effector When an agent initially connects to the server, it is invisible and can-
not affect a simulation in any meaningful way. It only possesses a so-called Cre-
ateEffector, whose message begins with the scene identifier. An agent uses this
effector to advice the server to construct the physical representation and all further
effectors and perceptors of the agent in the simulation environment according to a
scene description file it passes as a parameter.

Message format: (scene <filename>)

Frequency: Only once

Georgios Methenitis 21 August 2012

3. ROBOCUP 3D SIMULATION LEAGUE

HingeJoint Effector Effector for all axes with a single degree of freedom. The first
parameter is the name of the axis. The second parameter is a speed value given in
degrees per second. Setting a speed value on a hinge means that the speed will be
maintained until a new value is provided. Even if the hinge meets its extremity, it
will bounce around the extremity until a new speed value is requested.

Message format: (<name> <ax>)

Frequency: Once per cycle maximum

Synchronize Effector Agents running in Agent Sync Mode must send this command
at the end of each simulation cycle. Note that the server ignores this command, if
it is received in Real-Time Mode, so it is safe to configure agents to always append
this command to responses.

Message format: (syn)

Frequency: Every cycle

3.6.2 Soccer Effectors

Init Effector The init command is sent once for each agent, after the create effector
message has been sent. The init effector registers the agent as a member of a team
with a specific player number, both of which are passed as arguments in the init
effector message after the identifier init. All players of one team must use the same
team name and different player numbers. When an agent connects to the server, he
must first send a CreateEffector message followed by an InitEffector message
in order to initialize himself into the soccer field.

Message format: (init (unum <playernumber>) (teamname <teamname>))

Frequency: Only once

Beam Effector The beam effector allows a player to position itself anywhere on the
field only before any kick-off (at the start of each half or right after a goal has been
scored). After the beam identifier, the x and y coordinates define the position on
the field with respect to the field’s coordinate system in meters, where (0, 0) is the
absolute center of the field. The rot argument specifies the facing angle of the

Georgios Methenitis 22 August 2012

3.6 Effectors

player in degrees. A value of 0 points towards the positive x-axis, whereas a value
of 90 points to positive y-axis.

Message format: (beam <x> <y> <rot>)

Frequency: Once before each kick-off

Say Effector The say effector permits communication among agents by broadcasting
messages in plain ASCII text (20 characters maximum). In order to say something,
the following command has to be employed.

Message format: (say <message>)

Frequency: Once per cycle maximum

Georgios Methenitis 23 August 2012

3. ROBOCUP 3D SIMULATION LEAGUE

Georgios Methenitis 24 August 2012

Chapter 4

Player Skills

In this chapter we are going to present the main functions that are necessary for the
agent to be functional in the field. Every part of the agent’s software and supported
player skills will be extensively described below.

4.1 Agent Architecture

Before examining each individual skill of our players, it is important to describe the
general architecture of our agents, which is shown in Figure 4.1. The Soccer Simulation
Server (rcssserver3d) is responsible for communicating perceptor messages to the agent.
The Connection component handles this connection between the agent and the server.
These messages are handled by a string parser, which stores the incoming observations in
various data structures. Consequently, the functions that require these new observations
to update the agent’s Beliefs are now ready to proceed. Self-localization of the agent
into the field or a check if the agent has fallen on the ground are few of those belief
updates. Behavior is a major component of any agent. The agent has to combine all
the available knowledge and beliefs about the world state and act properly. Behavior is
the function which takes as input argument the agent’s beliefs about the world state and
computes an action to be executed by the agent as output. The Coordination component
is responsible for assigning roles to different agents implementing the strategy of team.
Communication and Motion are responsible for handling agent’s requests for sending
messages to teammates and executing movements respectively. These two components

Georgios Methenitis 25 August 2012

4. PLAYER SKILLS

Figure 4.1: The Agent Architecture.

send effector messages to the Connection component in each cycle, if necessary, and these
messages are relayed to the soccer simulation server.

4.2 Connection

The SimSpark server hosts the simulation process that manages the soccer simulation. It
is responsible for advancing the game from each cycle to the next. So, it is obligatory for
each agent to be connected to the server at all times during a simulated game. Agents
receive sense messages from the server every 20ms at the beginning of each simulation
cycle; these messages include information about all agent’s perceptions. Agents willing
to send action messages, can do so at the end of their think cycles, which may or may not
coincide with the simulation cycles. If these two cycles coincide, the server is going to
receive the action message at the same time it sends the next sense message. Figure 4.2

Georgios Methenitis 26 August 2012

4.3 Perceptions

Figure 4.2: Server and Agent Communication.

shows how the communication between server and agent takes place over consecutive
cycles.

4.3 Perceptions

Perceptions in simulated soccer are quite different compared to those in real soccer games.
Agents do not have to process raw data coming directly from sensors, but rather listen
to sensor and higher-level observation messages sent by the server at each cycle. These
messages take the following form:

(time (now 46.20))(GS (t 0.00) (pm BeforeKickOff))(GYR (n torso)
(rt 0.00 0.00 0.00))(ACC (n torso) (a 0.00 -0.00 9.81))(HJ (n hj
1)(ax 0.00))(HJ (n hj2) (ax 0.01))(See (G2R (pol 14.83 -11.81 1.
08))(G1R (pol 14.54 -3.66 1.12)) (F1R (pol 15.36 19.12 -1.91))(F
2R (pol 17.07 -31.86 -1.83)) (B (pol 4.51 -26.40 -6.15)) (P (tea
m AST_3D)(id 8)(rlowerarm (pol 0.18 -35.78 -21.65)) (llowerarm (
pol 0.19 34.94-21.49)))(L (pol 8.01 -60.03 -3.87) (pol 6.42 51.1
90 -39.13 -5.17))(L (pol 5.91 -39.06 -5.11) (pol 6.28-29.26 -4.8
8)) (L (pol 6.28 29.34 -4.95)(pol 6.16 -19.05 -5.00)))(HJ(n raj1
) (ax -0.01))(HJ (n raj2) (ax -0.00))(HJ (n raj3)(ax -0.00))(HJ(
n raj4) (ax 0.00))(HJ (n laj1) (ax 0.01))(HJ (n laj2) (ax 0.00)) ...

The above message is an example message our agent may receive from the server during
simulation. It includes information about the server time, the game state and time,

Georgios Methenitis 27 August 2012

4. PLAYER SKILLS

values for each one of the joints, visual observations from the camera, and data from
the accelerometer, gyroscope, and force sensors. We parse these messages and save the
enclosed information in data structures appropriate for each type of perception.

4.4 Localization

Once we have all the new perceptions from the server available, we can update our agents’
belief about its current self-location in the field and the current location of other objects
of interest (ball, teammates, opponents). Our localization scheme is largely based on a
method proposed by a colleague within a common course project [6]. Localization, as a
process, is executed every three cycles (60ms), in fact every time we receive observations
from the vision perceptor. A key restrictive factor is that the agents are equipped with
a restricted vision perceptor which limits the field of their view to 120 degrees. It is
easy to realize that the localization process would have been easier, if there was an
omni-directional vision perceptor.

4.4.1 Self Localization

The potentially visible objects in our current field of view may be of different types: ball,
landmarks, teammates, and opponents. After registering all currently visible objects, we
first use only the landmarks, which are located at permanent known positions in the field,
to derive candidate self-locations and update the agent’s belief about the current position
and orientation in the field. There are eight landmarks in the field, shown in Figure 4.3:
the four field corners (F1R, F2R, F1L, F2L) and the goalposts of the two goals (G1R,
G2R, G1L, G2L). These eight landmarks cannot be all visible simultaneously at the same
time; in general, the number of visible landmarks at any time for a player located within
the field will range from zero to four. For example, given the current location of the agent
in Figure 4.3, there are only three visible landmarks: F1R, G1R, G2R.

The self-localization function takes the distance, as well as the horizontal and vertical
angles of two currently visible landmarks as input and returns a candidate self location
(x, y, θ) as output, where (x, y) are the coordinates in the field and θ is the orientation of
the body with respect to the angle system of the field. The two visible landmarks form
two circles with radius equal to the observed distance to each one of them centered at the

Georgios Methenitis 28 August 2012

4.4 Localization

Figure 4.3: Nao’s Restricted Field of View and Field Landmarks.

static and known coordinates of these landmarks. Obviously, these two circles intersect at
two points, which represent two candidate self locations. We reject the wrong candidate
using the horizontal viewing angles of the two landmarks and also the fact that the
correct candidate cannot be way outside the field. Figure 4.4 shows a typical example
of self localization with two landmarks. In cases where the agent sees more than two
landmarks, the self-localization function is called for each pair of landmarks. The final
estimated location is computed as the average of the outcomes of all pairs. Apparently,
when the agent has less than two visible landmarks in the current field of view, the
self-localization update does not take place.

4.4.2 Object Localization

Apart from self localization, it is important to be able to compute the position of other
visible objects, such as opponents and the ball (note that there is no need to localize
teammates in the field; their beliefs are shared via communication). Knowing our own
location in the field helps us locate other visible objects too. For each currently visible

Georgios Methenitis 29 August 2012

4. PLAYER SKILLS

Figure 4.4: Self-Localization Example with the F1R and G1R Landmarks.

object, the vision perceptor informs us about its vertical and horizontal angles and its
distance from the agent. This information is sufficient for the calculation of their exact
positions into the field’s coordinate system. Figure 4.5 shows an example scenario of
calculating the positions of the ball and an opponent. To successfully locate other objects
in the field, the same condition as in self localization applies: there must be at least two
visible landmarks. If the currently visible landmarks are less than two, other objects
cannot be located in the field using the current perceptions; nevertheless, the agent
knows where they are located with respect to itself.

4.4.3 Localization Filtering

In the absence of a more sophisticated probabilistic localization scheme, we are forced
to ensure that localization results are qualitative enough for us to rely on. Due to the
temporary misses of landmarks from the field of view and the noisy observations from the

Georgios Methenitis 30 August 2012

4.4 Localization

Figure 4.5: Object (Ball and Opponent) Localization Example.

vision perceptor, localization based only on the current perception is not always accurate
enough to depend upon. Therefore, a simple filtering procedure on estimates computed
by the localization process is employed to update the agent’s belief about self locations
and positions of other objects over time.

In general, the localization process provides the agent with numerous estimated lo-
cations over time. The general idea we adopt is based on the fact that these estimates
do not include long sequences of consecutive faulty estimates. Therefore, it is fairly easy
to ignore sporadic faulty estimates (outliers), while updating the agent’s belief. To ad-
dress this problem, we came up with a simple localization filtering algorithm outlined
in Algorithm 1. We maintain a FIFO queue which stores the most recent non-faulty
location estimates. The average of the locations in the queue consist the agent’s belief
about its location in the field at any time. When a new estimated location arrives from
the localization process, we first check if the queue is empty; in this case, we simply
insert this estimate into the queue. Otherwise, we check if the newly arrived estimate
“agrees” with the current belief, whereby “agrees” means that they are not far apart.

Georgios Methenitis 31 August 2012

4. PLAYER SKILLS

Algorithm 1 Localization Filtering
1: Input: LastEstimate
2: Output: FilteredLocation
3: Queue: a FIFO queue storing the MaxSize (default=10) most recent estimates
4:

5: if size(Queue) = 0 then
6: Queue.Add(LastEstimate)
7: else if LastEstimate 6≈ AverageLocation(Queue) then
8: Queue.Remove()
9: else
10: if size(Queue) = MaxSize then
11: Queue.Remove()
12: end if
13: Queue.Add(LastEstimate)
14: end if
15: return AverageLocation(Queue)

If not, this estimate is ignored and additionally one element of the queue is removed.

This step represents a simple way of discounting the current belief in the presence of an

outlier estimate. If the outlier estimate corresponds to a correct location, it will persist,

eventually it will discard the entire queue with the current belief, and afterwards it will

initiate a new belief in the empty queue. Finally, if the new estimate “agrees” with the

current belief, it is inserted in the queue to reinforce the current belief, replacing one

element (the oldest one), if the queue has reached capacity. This simple filtering scheme

smooths out the belief of our agent’s location and rejects most faulty estimates.

Localization filtering applies both to the calculation of the agent’s self location and

to the calculation of the ball’s position. For the sake of efficiency, we do not use it to

filter opponent positions. As mentioned already, the filtered locations of teammates are

shared among team members via communication. The end effect of localization filtering

is a significant improvement on the localization outcome, so that we can rely upon it with

confidence.

Georgios Methenitis 32 August 2012

4.5 Motion

Figure 4.6: Nao’s Anatomy: Kinematic Chains and Joints.

4.5 Motion

The simulated Nao robot comes with 22 degrees of freedom, corresponding to 22 hinge
joints. Figure 4.6 shows Nao’s anatomy with all joints, split in five kinematic chains
(head, left arm, right arm, left leg, right leg). In robotics, a complex motion is commonly
defined as a sequence of timed joint poses. A pose is a set of values for every joint in
the robot’s body or in a specific kinematic chain at a given time. For any given set of n
joints a pose at time t is defined as:

Pose(t) = {J1(t), J2(t), . . . , Jn(t)}

Motion is an important part of every team participating into the RoboCup 3D Simulation
League. Motions can be static or dynamic. Most teams in this league make use of dynamic
motions, which give a major advantage on their side, at the expense of complexity. In our
work, we are using predefined static motion files. Motion files describe timed sequences
of poses, which provide fixed values for each joint at specific times; when executed, these
sequences achieve some kind of desired motion. The difference between static motion
files and dynamic motion is that the latter makes use of forward and inverse kinematics,

Georgios Methenitis 33 August 2012

4. PLAYER SKILLS

as well as calculation of the center of the robot’s body mass, to derive sequences of poses
dynamically. These dynamically computed motions can be corrected on the fly for better
body balance and faster movement. Since our goal was to study coordination algorithms,
we chose to work with the simpler approach of static, yet effective, motion files with
some dynamic enhancements. In our approach, we are using two kinds of such files:
XML-based and text-based.

4.5.1 XML-Based Motion Files

These motion files have been created and distributed by FIIT RoboCup 3D project [7] and
they provide forward walk, left and right side steps, strong and regular kicks, stand-up,
and left and right goalkeeper fall motions. These files have an intuitive XML structure,
which facilitates integration into our project. The general structure of these XML-based
motion files is shown below.

<phase name="Start" next="Phase1">
<effectors>

Joint Values
</effectors>
<duration>duration</duration>

</phase>

<phase name="Phase1" next="Phase2">
<effectors>

Joint Values
</effectors>
<duration>duration</duration>

</phase>

<phase name="Phase2" next="Phase1">
<effectors>

Joint Values
</effectors>
<duration>duration</duration>
<finalize>Final</finalize>

Georgios Methenitis 34 August 2012

4.5 Motion

</phase>

<phase name="Final">
<effectors>

Joint Values
</effectors>
<duration>duration</duration>

</phase>

As shown in the structure of this XML file, each movement is split into phases. Each
phase has a duration and values for every joint of the robot or the kinematic chain(s)
related to the movement. Moreover, each phase has an index which points to the next
phase. For example, the first phase (Start) has an index to the next phase (Phase1).
Phases with a finalize field can be used to end the corresponding movement. For
example, phase Phase2 has a finalize index which points to phase Final; this means
that, if we want to end the execution of this movement, we have to do it in phase Phase2
by transitioning to phase Final instead of continuing with the next phase (Phase1).

4.5.2 XML-Based Motion Controller

The motion controller is a major component in our software which enables and controls
the movement abilities of the robot. It is responsible for handling the movement requests
of the agent. Agents do not have direct access to robot joints and joint poses, but can
trigger desired motions by posting requests to the motion controller in the form of values
to a specific variable. Each agent declares in this variable the movement he is willing
to perform. In each cycle, the motion controller reads this variable and generates an
appropriate hinge joint effector string, aiming at either terminating a running motion
request (if different than the new one), or initiating the requested one (if there was
no running request), or simply continuing with the execution of the current request (if
initiated earlier). In effect, the motion controller satisfies a motion request posted by the
agent, even if the completion of the motion takes several cycles, ensuring that transitions
between different motions are smooth.

Figure 4.7 describes the general architecture of the XML-based motion controller. The
motion controller checks if there is a motion which is playing already. If the currently

Georgios Methenitis 35 August 2012

4. PLAYER SKILLS

Figure 4.7: XML-Based Motion Controller.

playing motion is the same as the requested one, the motion controller continues with the
next of its phases; if not, the controller tries to finalize the playing movement in order to
start playing the newly requested one (in a future cycle).

Figure 4.8 shows the execution sequence of an example motion file. In general, XML-
based motions define cyclic phases to generate continuous movement. For example, the
walking motion has three main phases which create a cycle. If the motion trigger has not
changed at the end of the last phase (Phase 3), we have to continue with the execution of
the first phase (Phase 1), not with the final one. If the motion trigger is different at the
end of the last phase, then we proceed to the final phase to terminate the current motion,
before starting the new one (if any). As we saw in the structure of every XML-based
motion file, each phase lists a set of joint values. These values are in degrees. To generate
motions for our agent we need to create a motion string, which encloses information about
each joint’s velocity. The velocity of a joint i is computed as follows:

JointV elocityi =
DesiredJointV aluei − CurrentJointV aluei

CurrentPhaseDuration

The CurrentJointV aluei is provided by the corresponding perceptor message. At the
beginning of a phase, a velocity value is calculated for each joint involved in the motion

Georgios Methenitis 36 August 2012

4.5 Motion

Figure 4.8: Phase Execution Sequence for a Typical XML-Based Motion.

and the final output of the motion controller is sent to the server. Note that zero velocity
is set for every joint not included in the effector field of the current phase, so that these
joints stop moving. These velocity values are not modified until the phase is completed.

4.5.3 Text-Based Motion Files

The text-based motion files we use have been adopted from the Webots simulator [8]
and they provide left and right turn motions. These text-based motion files have simpler
structure than the XML-based motion files. By default, each pose lasts two simulation
cycles (40ms). The structure of these motion files is shown below.

#WEBOTS_MOTION,V1.0
LHipYawPitch,LHipRoll,LHipPitch,LKneePitch,LAnklePitch,...
00:00:000,Pose1,0,-0.012,-0.525,1.05,-0.525,0.012,0,...
00:00:040,Pose2,0,-0.011,-0.525,1.05,-0.525,0.011,0,...
00:00:080,Pose3,0,-0.009,-0.525,1.05,-0.525,0.009,0,...
00:00:120,Pose4,0,-0.007,-0.525,1.05,-0.525,0.007,0,...
00:00:160,Pose5,0,-0.004,-0.525,1.05,-0.525,0.004,0,...

Georgios Methenitis 37 August 2012

4. PLAYER SKILLS

00:00:200,Pose6,0,0.001,-0.525,1.051,-0.525,-0.001,0,...
00:00:240,Pose7,0,0.006,-0.525,1.05,-0.525,-0.006,0,...
00:00:280,Pose8,0,0.012,-0.525,1.05,-0.525,-0.012,0,...
00:00:320,Pose9,0,0.024,-0.525,1.05,-0.525,-0.024,0,...

Lines starting with # are comments. The fist non-comment line must list all joints involved
in the defined movement using their names separated by commas. As an example, a walk
motion requires only the joints from the leg kinematic chains. The remaining lines define
one pose each. From left to right, each line contains the duration of the pose, the pose
number, and the desired angle (in radians) for each joint in the same order they were
given at the beginning. Note that, unlike the XML-based motion files, here the same
joint set must be used throughout the entire motion.

4.5.4 Text-Based Motion Controller

The motion controller for text-based motions is based on the same principle as the XML-
based controller. The joint values in the motion files represent radians, so we have to
convert these values into degrees before we proceed. Each pose nominally corresponds
to two cycles, but we can make it last one or two or three cycles depending on the speed
(faster, normal, slower) at which we want the motion to be executed. The text-based
motion controller can be customized to perform these motions in different ways. The
following parameters can be modified:

Duration The time between poses in simulation cycles. By default, Duration = 2.

PoseStep The step for advancing from pose to pose. By default, PoseStep = 1, but we
can subsample the motion with other values, e.g. for PoseStep = 2, we execute
pose1, pose3, pose5, ...

The desired velocity of each joint i is computed by:

JointV elocityi =
DesiredJointV aluei − CurrentJointV aluei

Duration× CycleDuration

Again, the CurrentJointV aluei is provided by the corresponding perceptor message. A
velocity value is calculated for each joint involved in the motion and the final output of
the motion controller is sent to the server.

Georgios Methenitis 38 August 2012

4.5 Motion

Figure 4.9: Dynamic Walk Leaning: Left Leaning (left), Right Leaning (right).

4.5.5 Dynamic Motion Elements

In contrast to the general idea of static motion files, we have tried to implement some
dynamic features into our motions. There is no much room for improvement in static
motions, but with these features we managed to achieve some nice results.

Walk Leaning The XML-based walk motion can be dynamically modified to lean to
the right or to the left. This is accomplished by altering the joint values of the (left
or right) HipPitch and AnkePitch joints in specific phases of the walk motion. In
effect, these changes force the corresponding leg to perform a slightly smaller step
compared to the nominal step size. The end effect is a smooth walk motion which
leans slightly to the left or to the right, as shown in Figure 4.9, saving time from a
full body turn motion.

Walk Slowdown Its important for our agent to slowdown while stopping in order to
maintain stability. The XML-based walk motion can be dynamically modified by
scaling the phase durations in order to achieve such a slowdown. Increasing the
phase durations dynamically by about 35% yields a smooth approach to a stopping
position.

Turn Gain The text-based turn motions can be dynamically modified using a gain value
for scaling the resulting velocities in order to perform the motion in a smoother or
rougher way. By default, this gain value is set to 1.0, however slightly smaller or

Georgios Methenitis 39 August 2012

4. PLAYER SKILLS

Figure 4.10: Dynamic Turn Gain: Turn Degrees (y-axis) against Gain Factor (x-axis).

larger values can result in useful variations of the defined motion. By dynamically
changing this value between 0.3 and 1.0, the agent is able to turn its body anywhere
between 7 and 40 degrees, as shown in Figure 4.10.

4.6 Actions

In this section, we describe the way agents affect and change their environment. In our
approach, actions are split into groups in terms of their complexity and type.

4.6.1 Basic Actions

Basic actions combine perceptual information and motion files in simple ways to achieve
something useful. These basic actions are:

Look Straight

Moves the head to its nominal position. Both head joints are set to 0.

Georgios Methenitis 40 August 2012

4.6 Actions

Scan

Moves the head to perform periodic panning and tilting.

Pan Head

Moves the head to perform periodic panning at zero tilt.

Track Object

Moves the head to bring a particular object to the center of the field of view. This action
is applicable only when the object being tracked is visible, but, even when the object is
visible, it is limited by the head joint ranges.

Track Moving Object

This action estimates the direction and the speed of a moving object using a small number
of observations, obtained while performing the Track Object action. It records a set of
five consecutive observations and another set of five consecutive observations delayed by
a fixed time period (the default is 5 cycles). The difference between the average positions
of each set gives a vector that reveals the direction of motion. Taking the ratio of the
magnitude of this vector and the time delay yields the speed of the moving object. This
action is applicable only when the moving object being tracked is visible, but, even when
the object is visible, it is limited by the head joint ranges.

Find Opponent’s Goals

This action finds the direction of the opponent’s goal with respect to the agent by per-
forming the Scan action until the opponent’s goal becomes visible.

Look For Ball

Turns the body of the agent, while performing the Scan action, until the ball appears
within the field of view.

Georgios Methenitis 41 August 2012

4. PLAYER SKILLS

Turn To Ball

Turns the body of the agent towards the direction of the ball, while performing the Track
Ball action. It can applied only when a ball is visible.

Turn To Localize

Turns the body of the agent, while performing the Pan Head action, until the agent’s
belief about its own location is updated with confidence. It can be used when the agent
needs to (re)localize itself into the field.

Stand Up

Makes the agent stand up on its feet, after a confirmed fall on the ground, whether face-up
or face-down. This action monitors the inertial sensors (accelerometers and gyroscopes)
to check if the agent has fallen on the ground. Incoming gyroscope and accelerometer
values above a specific threshold indicate a possible fall, but this has to be confirmed,
because it is not unusual to receive values above threshold due to collisions without a
fall. To confirm a fall, the action checks the force resistance perceptors located under
the agent’s feet. If these perceptors indicate that the legs do not touch the ground, then
we are quite sure that a fall has occurred. In this case, a stand up motion is executed.
Foot pressure values are also used to determine whether the stand up motion succeeded
or not. The stand up motion is repeated, until it succeeds. This action is applicable at
all times, however a stand up motion is executed only when the robot lies on the ground.

Prepare for Kick

Positions the agent to an appropriate position with respect to the ball in order to per-
form a kick successfully. Only forward and side steps are used in this fine positioning.
Figure 4.11 shows an example of robot kicking a ball after completing this action.

4.6.2 Complex Actions

Complex actions combine perceptual information, motion files, and basic actions. They
have a more complicated structure and aim to achieve specific goals. These complex
actions are:

Georgios Methenitis 42 August 2012

4.6 Actions

Figure 4.11: Nao Performing a Kick after Positioning for Kick.

Avoid Obstacles

This action records all obstacles around the agent and derives an obstacle-free route
to a specified target. Initially, this action stores the positions of all obstacles located
within 2m from the agent by performing the Pan Head action and watching the perceptor
messages. Due to the fact that the simulated Nao’s head can pan from −120◦ to +120◦

and the field of view is 120◦, we can obtain a complete imaging of all obstacles located
close to our agent. It is common to observe the same obstacle more than once; in
this situation we only store the average of these observations. In a dynamic, multi-agent
environment it is important to avoid collisions with other agents or fixed landmarks, such
as goal posts in our simulated soccer games. To avoid obstacles we rely on a simple, yet
reliable and effective, method. For each recorded obstacle, we calculate two escape angles
that determine the two directions (relative to the agent), which guarantee avoidance of
the obstacle at a safe distance. All other angles between these two escape angles are
considered to be forbidden. Afterwards, any escape angle of some obstacle that falls
within the forbidden area of some other obstacle is discarded. The precise calculation
of the escape angle set is described in Algorithm 2. The remaining escape angles, and
particularly the escape way points they define (the points closest to the obstacle along the
direction of the escape angles), are evaluated in terms of the angle and distance overhead
they incur with respect to the agent orientation (for the angle) and the target (for the

Georgios Methenitis 43 August 2012

4. PLAYER SKILLS

Algorithm 2 Escape Angle Set Calculation
1: Input: Obstacles = {O1, O2, ..., On}
2: Output: EscapeAngleSet
3:

4: for i = 1 to n do
5: find LeftEscapeAnglei for obstacle Oi

6: find RightEscapeAnglei for obstacle Oi

7: end for
8: EscapeAngleSet = ∅
9: for i = 1 to n do
10: if LeftEscapeAnglei 6∈ [LeftEscapeAnglej, RightEscapeAnglej],∀j 6= i then
11: EscapeAngleSet = EscapeAngleSet ∪ {LeftEscapeAnglei}
12: end if
13: if RightEscapeAnglei 6∈ [LeftEscapeAnglej, RightEscapeAnglej],∀j 6= i then
14: EscapeAngleSet = EscapeAngleSet ∪ {RightEscapeAnglei}
15: end if
16: end for
17: return EscapeAngleSet

distance). The way point that minimizes the total overhead is selected as a temporary
target for avoiding the obstacles, while making progress towards the target. This method
yields dynamically consistent results, meaning that the temporary target does not change
in subsequent cycles as long as the obstacles remain stationary, until they are cleared on
the way to the real target. Obstacle avoidance is demonstrated in Figure 4.12, in a simple
scenario, where there are two obstacles between the agent and its target position. Two
of the escape angles are discarded; the way point on the left is selected as a temporary
target to clear the obstacles.

Walk to Ball

Makes the agent walk towards the ball and stop when the ball is close enough to perform
a kick. First, it performs the Turn to Ball action and then walk towards the ball, slowing
down when it comes close to the ball. Recall that the ball distance returned by the vision
perceptor is the distance between the camera, which is attached to agent’s head, and

Georgios Methenitis 44 August 2012

4.6 Actions

Figure 4.12: Obstacle Avoidance.

the ball, which lies on the ground. However, for approaching the ball with precision,
we need the distance on the ground between the agent’s feet and the ball. To compute
this distance, we first use forward kinematics along the sagittal plane of the robot to
derive the current height of the camera. Taking the agent’s ankle as the origin, it is easy
to calculate every joint’s position from ankle to head in the two-dimensional space of
the sagittal plane using only the current values of the AnklePitch, KneePitch, HipPitch
joints. Having the ball distance and the height of the camera, the ground distance can
be easily derived using the Pythagorean Theorem.

GroundDistance =
√
BallDistance2 + CameraHeight2

Figure 4.13 explains the derivation of the ground distance to the ball.

On Ball Action

This action moves the agent close to the ball and executes an appropriate kick depending
on the current state of the game. This action has a finite state machine logic shown in
Figure 4.14. It first performs the Walk To Ball action in order to reach the ball. After the
successful completion of the Walk To Ball action, the agent performs the Find Opponent’s

Georgios Methenitis 45 August 2012

4. PLAYER SKILLS

Figure 4.13: Ground Distance between the Agent and the Ball.

Goal action. Subsequently, it aligns itself with the direction of the opponent’s goal; the
precision of this alignment is inversely proportional to the distance from the opponent’s
goal, meaning that far away from the opponent’s goal there is more tolerance, since we
only want to clear the ball from our own half of the field. Afterwards, it performs the
Position for Kick action and finally it executes a kick motion. At any point of time, it is
possible that an opponent agent takes the ball away from our agent; if that happens, the
agent returns to the beginning.

Walk to Coordinate

This action moves the agent to a specific location (xt, yt, θt) in the field. To perform this
action we need to know our own location (xa, ya, θa) in the field; from there it is easy to
calculate in which direction φ and at what distance d to walk in order to reach the given
target:

φ = atan2(xt − xa, yt − ya)

d =
√

(xt − xa)2 + (yt − ya)2

Figure 4.15 shows an example of this calculation. The actual locomotion of the agent
towards the target is done through the Avoid Obstacles action, which takes the pair (d, φ)
as input and ensures that obstacles are avoided on the way to the target. Note that

Georgios Methenitis 46 August 2012

4.6 Actions

Figure 4.14: On Ball Action Logic Flowchart.

distance and direction are recalculated as the agent makes progress toward its target.
After the position (xt, yt) has been reached, a final rotation in place turns the agent
towards the desired direction θt. The action terminates when the agent reaches the
desired location (xt, yt, θt).

Walk To Direction

This action makes the agent walk towards a specific direction. If the change with respect
to the current orientation is small (default: 7◦), it employs a left or right leaning walk
action. For larger changes, it employs a turn action to align with the given direction in
parallel to a straight walk action to move along the given direction. The turn action ceases
as soon as the agent has aligned its orientation with the given direction. The Walk to
Direction action terminates only when a new action request or an “empty” action request
is posted. The actual locomotion of the agent towards the target direction make use of
the Avoid Obstacles action at all times.

Georgios Methenitis 47 August 2012

4. PLAYER SKILLS

Figure 4.15: Walk To Coordinate Action.

Dribble Ball To Direction

This action attempts to dribble the ball towards a specific direction. It is quite similar
to the Walk To Direction action, however the agent tries to keep the ball in front of its
feet at all times. The actual locomotion of the agent towards the target direction is done
through the Avoid Obstacles action. This action is not fully functional in our software,
since movements based on motion files make it hard to keep ball consistently in front of
the agent.

4.7 Communication

Communication in Simspark is not ideal. There are no restrictions about the use of the
say effector and every agent can use it at each cycle. However, the hear perceptor comes
with some restrictions (cf. Section 3.5.2). Messages shouted from beyond a maximum
distance (currently 50 meters) cannot be heard. Given that the dimensions of the field
are currently only 21m × 14m (version 0.6.5) or 20m × 30m (version 0.6.6) (about 25m

Georgios Methenitis 48 August 2012

4.7 Communication

tcycles0 5 10 15

Figure 4.16: Time Slicing Communication Protocol.

or 36m in diagonal length), there is no limit in practice. However, due to the limited
communication bandwidth, we utilize the communication channel in the following way, to
ensure that every message sent from an agent will be heard by the other agents in time.
A simple communication protocol has been created in which time is sliced into pieces
lasting one server cycle (20ms) each and repeats every three cycles (60ms). Figure 4.16
shows how exactly time is sliced. The first of these three cycles is used for sending and
the next two cycles are left idle on purpose to ensure that the message sent in the first
cycle is delivered to all teammates. During the sending cycle, only one agent is allowed to
send its message to the others. Every time slice of the protocol has an associated integer
label which indicates the uniform number of the player able to send its message at that
slice. This label starts at 1 and grows by 1 every time a player sends a message, until
it reaches the maximum uniform number and loops back to number 1. Since there is no
common clock, to ensure that the agents are synchronized we make use of the changing
game states, which are shared and known to all players; whenever the game state changes,
the agents reset their integer label counters. Through this simple protocol, every player
can receive reliably the messages from all teammates every 540ms (27 cycles) for a team
of 9 players or every 660ms (33 cycles) for a team of 11 players.

Georgios Methenitis 49 August 2012

4. PLAYER SKILLS

Georgios Methenitis 50 August 2012

Chapter 5

Team Coordination

In this chapter, we are going to present the most important, exciting, and time-consuming
part of this thesis. Up to this chapter, we have discussed all skills that agents need in order
to be functional in the soccer field. With these functionalities agents are able to locate
themselves in the field, communicate with each other, and execute actions combining
movements through the motion controller. However, agents miss a thinking process with
which they will be able to decide what action they should take for the global benefit of
the team. In real human soccer, this will correspond to players with excellent individual
skills for a soccer match, but no reasoning ability to choose what is best to do at each
time. Therefore, it is crucial to come up with a high-level process which will coordinate all
these skills, motions, communication ability, and actions yielding as a result a complete
behavior for each agent within the frame of a global team strategy. As behavior, we
define the process in which an agent takes as input arguments its beliefs and decides
what to do as an output.

5.1 Coordination Protocol

In our approach, instead of each agent deciding its own behavior, players depend on
a centralized process, called team coordination, which implicitly determines individual
behaviors for each agent. The team coordination algorithm is responsible for gather-
ing messages from all agents and producing appropriate actions for all agents towards
achieving a common goal. We choose one player (by default, the goalkeeper) to act as
the central coordinator, that is the one who is going to execute this team coordination

Georgios Methenitis 51 August 2012

5. TEAM COORDINATION

Figure 5.1: The Coordination Protocol.

procedure on behalf of the entire team. This means that all players communicate their
beliefs to the goalkeeper, the goalkeeper executes the team coordination procedure for
the entire team, and finally the goalkeeper sends back to the players the actions they are
required to take.

Figure 5.1 shows the entire coordination protocol (which may last several simulation
cycles). All players initially update their beliefs. The coordinator (goalkeeper) waits for
messages from all other players. Once these messages are gathered at the coordinator,
the coordination procedure is executed and the resulting actions for each player are
communicated back to the players. At this point all players execute their actions, in
essence realizing their behavior. We selected the goalkeeper to act as coordinator, because
its role is quite distinct and independent from the other players and therefore it can afford
to dedicate more computational resources to the team coordination algorithm compared
to the other players.

The team coordination procedure executed only by the coordinator after all messages
have been received is split in several phases:

Update Coordination Beliefs The local world state beliefs from the other players
are combined in order to update the global belief about the world state (global

Georgios Methenitis 52 August 2012

5.1 Coordination Protocol

ball location, distances of all players from the global ball location, locations of all
players).

Determine Coordination Subsets Field players are split into non-overlapping sub-
sets according to their significance in the current game state. These subsets are:

• Goalkeeper : one player, the goalkeeper

• Inactive: players fallen on the ground or players with lost self-location

• Active: three players, the ones closest to the ball

• Support: all remaining players

Determine Active Positions Several candidate positions are determined for the active
players.

Coordinate Active Players The active player closest to the ball is assigned to go to
the ball and the best pair of candidate positions is selected for the remaining active
players according to a cost function.

Generate Team Formation A formation is generated for the entire team (excluding
the goalkeeper) depending on the current position of the ball in the soccer field.

Assign Team Roles All team players, except the goalkeeper, are assigned roles taking
into account the desired formation of the team and their current position.

Determine Support Positions Candidate positions are determined for the support
players. These are determined by the desired team formation, after excluding the
roles assumed by the active players and a number of least-significant roles equal to
the number of inactive players.

Coordinate Support Players The best mapping between support players and support
positions according to a cost function is computed.

Algorithm 3 describes the entire coordination procedure, which currently lasts six simula-
tion cycles. In each simulation cycle, some, but not all, of the above phases are executed.
This choice was dictated by the time limitation of the agent think cycle; with this choice,
each group of phases fits within a single simulation cycle causing no delays and enabling
real-time operation.

Georgios Methenitis 53 August 2012

5. TEAM COORDINATION

Algorithm 3 Coordination Protocol
1: Input: CoordinationMessages = {M1, M2, ..., MN−1}, N = NumberOfP layers

2: Output: Actions = {A1, A2, ..., AN−1}
3:
4: if CoordinationCycle = 1 then
5: B ← UpdateCoordinationBeliefs(CoordinationMessages)
6: CoordinationCycle = CoordinationCycle + 1
7: else if CoordinationCycle = 2 then
8: S ← DetermineCoordinationSubsets(B)
9: CoordinationCycle = CoordinationCycle + 1
10: else if CoordinationCycle = 3 then
11: Pactive ← DetermineActivePositions(B, S)
12: CoordinationCycle = CoordinationCycle + 1
13: else if CoordinationCycle = 4 then
14: Aactive ← CoordinateActiveP layers(Pactive, S, B)
15: CoordinationCycle = CoordinationCycle + 1
16: else if CoordinationCycle = 5 then
17: F ← GenerateTeamFormation(B)
18: R← AssignTeamRoles(Aactive, B, F)
19: Psupport ← DetermineSupportPositions(R, F, S)
20: CoordinationCycle = CoordinationCycle + 1
21: else if CoordinationCycle = 6 then
22: Asupport ← CoordinateSupportP layers(Psupport, S, B, R, F, Aactive)
23: Actions = Aactive ∪Asupport ∪Ainactive

24: CoordinationCycle = 0
25: end if

5.2 Coordination Modes

Coordination is not a static procedure and may change dynamically during different game
states. There are three modes of team coordination:

Active This is the normal mode of coordination. Every aspect of the coordination
process we have discussed above is used for the team’s coordination and the com-
putation of action for all field players.

Support In this mode, all players, excluding the goalkeeper, join by default the support

Georgios Methenitis 54 August 2012

5.3 Coordination and Communication

subset. It is used in situations where our goalkeeper takes control of the ball or
where only the opponent team has the right to perform a kick to the ball, e.g.
opponent’s kick-off, opponent’s goal kick, etc.

Wait In this mode, all players, excluding the goalkeeper, join by default the inactive
subset. It is used in situations where both teams have to wait for the kick-off signal
before a kick-off.

5.3 Coordination and Communication

Coordination is accomplished through communication. We use the common communi-
cation channel through the simulation server in order to provide the messaging between
players involved in the coordination process. For this reason, communication plays a ma-
jor role in our approach. The general idea of this communication process among players
is that the coordinator (goalkeeper) needs to know all agents’ beliefs about the world
state before proceed with the execution of the coordination protocol. Furthermore, com-
munication is needed to send the outcome of coordination from the coordinator to all
players.

There are several types of messages, each one of them having different functionality
and serving a specific purpose. The arguments of each message are preceded by a single-
letter identifier indicating the type of the message. The message types used in our
coordination protocol are:

Init Message This type of message declares the presence of each agent in the simulation
environment. All players, other than the coordinator, must send this message to
the coordinator before the coordination protocol begins.

Message format: i,<Agent Uniform Number>

Start Message This type of message is sent only by the coordinator; it declares that all
agents are now initialized and ready to begin the coordination process. Each agent
receiving this message should immediately start sending coordination messages.

Message format: s,<Coordinator Uniform Number>

Georgios Methenitis 55 August 2012

5. TEAM COORDINATION

Coordination Message This is the most important type of message. It includes in-
formation about each agent’s beliefs. There are four subtypes of this message
depending on the current beliefs of the agent:

Type C The agent has complete awareness of the ball and self location; the mes-
sage includes the uniform number, the self position, and the ball position.

Message format: c,<Agent Uniform Number>,<Agent X>,<Agent Y>,
<Ball X>,<Ball Y>

Type L The agent has complete awareness only of his own position in the field;
the ball is not currently within the field of view and, even though there may be
a filtered belief about the ball location, it is better to avoid sending possibly
faulty information. The message includes only the uniform number and the
self position.

Message format: l,<Agent Uniform Number>,<Agent X>,<Agent Y>

Type B The agent has complete awareness of the ball’s location, only with respect
to itself. The message includes the uniform number, the distance of the ball
and the horizontal angle of the ball relative to its own body angle.

Message format: b,<Agent Uniform Number>,<Ball Distance>,<Ball Angle>

Type X The agent has complete unawareness of the ball and self location or has
fallen on the ground. The message includes only the uniform number. These
agents join the inactive subset.

Message format: x,<Agent Uniform Number>

End Message This type of message asks the players, other than the coordinator, to stop
sending coordination messages. At this point, the coordinator is ready to execute
the coordination procedure and calculate actions for all players.

Message format: e,<Coordinator Uniform Number>

Action Message This type of message is sent only by the administrator; it declares
which action each agent has been assigned by the coordination process. These
messages are sent at the end of the coordination procedure, when actions for all
players have been computed. The message includes the uniform number of the
recipient agent, the action identifier, and the possible action parameters.

Georgios Methenitis 56 August 2012

5.3 Coordination and Communication

Figure 5.2: Communication Process in Coordination.

Message format: a,<Agent Uniform Number>,<Action ID>,<Action Parameters>

Figure 5.2 presents the messaging procedure between the agents in order to coordinate
their actions. First, agents have to initialize their presence in the field with “init” mes-
sages. The coordinator saves these messages and, when all other players have initialized
themselves, broadcasts a “start” message. This message means that all players are now
ready to start the coordination process. In this phase, all players, other than the coor-
dinator, send their “coordination” messages to the coordinator. When the coordinator
gathers these messages from all players, it broadcasts an “end” message to make them

Georgios Methenitis 57 August 2012

5. TEAM COORDINATION

stop sending unnecessary “coordination” messages. The next phase of this process is the
execution of the coordination protocol which lasts six simulation cycles, approximately
120ms. When it finishes, the coordinator broadcasts the resulting actions to each one
of the other players using individual “action” messages. The receiving agents execute
the commanded actions, until a new “action” message arrives. While action execution
is ongoing, after a timeout period defined by the user (currently set at 20 simulation
cycles), the same coordination process is repeated, excluding the initialization phase.

5.4 Coordination Beliefs Update

In the previous section we presented how players exchange messages with the coordinator.
In this section we are going to discuss how the coordinator fuses the individual beliefs
received by the other agents into a single global belief. This step is of major importance in
any multi-agent system. Having multiple observations of the same world could potentially
be a problem. The coordinator has to combine these observations without knowing which
one of them is faulty or correct in order to obtain a global realistic representation of the
world. Knowledge of the ball and agents’ positions is sufficient to execute the coordination
algorithm without making guesses.

The global ball position is computed taking into account only the information commu-
nicated by the agents using “type C” coordination messages. Furthermore, information
of the coordinator is taken into account, if the coordinator also has sufficient knowledge
about the ball and self location. Apparently, the maximum number of ball observations
at any time is the number of all agents, when all of them have sufficient knowledge about
the ball and self location. As shown in Figure 5.3, different ball observations can differ
from each other. In our approach, we use a simple algorithm to estimate the global ball
position with accuracy. A threshold is defined (by default, 1 meter) in order to split the
observations in clusters. Each cluster is represented by the average of the observations
it contains. The first incoming observation defines the first cluster. For each subsequent
incoming observation, we check its distance against all representatives of all existing clus-
ters. Focusing only on the distances that fall below the threshold and the corresponding
cluster, the new observation is assigned to the largest of these clusters, updating at the
same time the representative of that cluster. Otherwise, the new observation gives rise to
a new cluster with a single member. Each cluster is assigned a weight so that the cluster

Georgios Methenitis 58 August 2012

5.4 Coordination Beliefs Update

Figure 5.3: Global Ball Position Estimation from Multiple Ball Observations.

with the most observations is naturally assigned the biggest weight. Our choice for the
weight function is the size |si| of cluster si cubed, that is w(si) = |si|3. Figure 5.3 shows
the resulting four cluster for a given set of nine observations. Consequently, we have
to compute our belief about the global ball position. This is taken to be the weighted
average of the cluster representatives. More specifically, given m clusters si containing
ball observations oij each, the final ball belief is computed as:

GlobalBallBelief =
m∑

i=1

w(si)∑m
k=1 w(sk)

∑
oij∈si

oij

|si|

The next step towards forming the global belief is to determine each agent’s position
and its distance from the estimated global ball position. Players who have sent a “Type
C” or “Type L” coordination message have already communicated their exact position

Georgios Methenitis 59 August 2012

5. TEAM COORDINATION

in the field; their distance from the ball is simply calculated as the distance between
the estimated global ball position and the players’ position. Players who have sent a
“Type B” coordination message don’t know their exact position in the field, but this can
be inferred using the estimated global ball position and the information they submitted
about the distance and angle of the ball observation with respect to themselves; their
distance from the ball is simply the one they reported. Finally, for players who have sent
a “Type X” coordination message, we assume an infinite distance to distinguish them
from all other players; their position in the field cannot be inferred.

5.5 Determination of Coordination Subsets

The existence of multiple agents makes coordination a complex and computationally ex-
pensive problem to be solved by a single agent. In our case, the coordinator (goalkeeper)
would have to solve this huge problem for a total of nine players or eleven players (de-
pending on the server’s version). Instead of trying to solve the coordination problem at
one level, a simple approach is to first decompose the problem into smaller coordination
problems and then solve each one of them in isolation. To this end, we split the play-
ers into small subsets in which coordination can be achieved quickly to meet real-time
requirements. In our approach, there are four such subsets:

Goalkeeper This subset includes only one agent, the goalkeeper. The player with the
uniform number 1 is selected to be the agent responsible for guarding our goal.
Goalkeeper also serves as the coordinator. His independent and individual behavior
is explained in Section 5.13.

Inactive subset The Inactive subset consists of agents who have sent “Type X” coor-
dination messages, that is players fallen on the ground or players with lost self-
location. It is the less important subset of agents in the coordination procedure
and in fact there is no need to coordinate them. Agents in this subset are assigned
the same action, namely the Turn to Localize action. After they find their posi-
tions, they will have a chance to enter the active or support subsets in the next
coordination cycle.

Georgios Methenitis 60 August 2012

5.6 Soccer Field Utility Fuction

Active subset The Active subset consists of three agents, the ones closest to the ball,
and it is the most important subset of agents in the coordination. Agents in this
subset are responsible for executing the most critical actions for their team. More-
over, due to the small size of this subset, we can afford to solve their coordination
problem by exhaustive enumeration to obtain an optimal solution.

Support subset The Support subset consists of all remaining agents. The size of this
subset, which varies between 0 and 8 or 10 (depending on the server’s version),
may result in prohibitive computational costs for optimal coordination, therefore
we adopt an approximate, yet effective, coordination method based on dynamic
programming.

Figure 5.4 presents an example of coordination subsets. Assuming that all agents have
complete awareness of their position, it is easy to realize that the agents within the red
distance threshold will join the active subset and the other five agents who have farther
distances from ball (yellow distance threshold) will join the support subset. Moreover,
a possible existence of one or more agents having unawareness about the world state,
should lead them joining the inactive subset. The goalkeeper is in its own subset.

5.6 Soccer Field Utility Fuction

In order to proceed our discussion about the coordination process, we have to define a
simple, yet functional, way to give a value to every spot of the soccer field. Figure 5.5
presents this utility function over the entire soccer field, whose analytical form is:

FieldUtility(x, y) = CurrentSide× x×
(
FieldWidth

2 − |y|
)

where CurrentSide is either +1 or −1 depending on the side of the field we currently
play, so that the highest value corresponds to the opponent’s goal. The key idea is that, as
the ball is heading towards the opponent goal, this value is becoming higher. In contrast,
as the ball is heading towards our goal, this value is becoming lower. It is easy to realize
that a high value at some spot means more chances to score a goal, whereas a spot with
small value implies a dangerous game situation. This function will prove to be useful in
the next steps of the coordination process.

Georgios Methenitis 61 August 2012

5. TEAM COORDINATION

Figure 5.4: Coordination Splitter.

5.7 Determination of Active Positions

Until now, we have updated the coordination beliefs and we have split agents into sub-
sets. In this phase of the coordination process, we have to compute promising candidate
positions for the Active subset. We distinguish between two cases. In the first case, the
ball is located in our half of the field. In this case we have to find candidate positions
which have a defensive approach. In the other case, if the ball is located in the opponent’s
half of the field, we have to find candidate positions which have an offensive approach.

In both cases, we start by creating a set of equidistant positions around the ball located
at different radii, discarding any such positions that fall outside or near the soccer field’s
limits. For the defensive approach, we choose 12 positions at a radius of 1 meter and 30◦

apart and another 12 positions at a radius of 1.5 meters and 30◦ apart. For the offensive

Georgios Methenitis 62 August 2012

5.7 Determination of Active Positions

Figure 5.5: Soccer Field Value.

approach, we choose 12 positions at a radius of 2 meters and 30◦ apart and another 24

positions at a radius of max{3, (|x|+ |y|)/(FieldLength/2 +FieldWidth/2)} meters and

15◦ apart. The idea in the offensive case, is that the more we approach the corners of

the field, the more the candidate positions are spread around the ball. Figure 5.6 shows

how these positions are determined in two different scenarios.

These sets of candidate positions is further filtered using the soccer field utility func-

tion. In the defensive case, we keep up to nine positions, the ones with the least utility

values. These positions will mostly be between the ball and our own goal aiming to

protect against an opponent strike. In the offensive case, we keep up to nine positions,

the ones with the highest utility values. These positions will mostly be between the ball

and the opponent’s goal aiming to position players at attacking spots. Figure 5.7 shows

the filtered sets of candidate positions for the Active subset in the same scenarios.

Georgios Methenitis 63 August 2012

5. TEAM COORDINATION

Figure 5.6: Initial Candidate Active Positions: Defense (left) and Offense (right).

Figure 5.7: Final Candidate Active Positions: Defense (left) and Offense (right).

5.8 Active Players Coordination

Our coordination scheme for the Active subset requires that one player will undertake
the task of approaching the ball, whereas the other two players will have to choose a
pair of positions from the candidate Active positions. This is accomplished by a mapping
function.

Player on Ball

An agent from the Active subset has to be selected in order to execute the On Ball action.
We have to find the agent who minimizes a weighted sum over the following two terms:

1. Distance from ball di, the distance of agent i from the ball.

Georgios Methenitis 64 August 2012

5.8 Active Players Coordination

Algorithm 4 Active Players Optimal Mapping
1: Input: ActiveP layers = ActiveSubset−OnBallP layer = {Agent1, Agent2}
2: Input: ActivePositions = {P1, P2, ..., PN}, N ≤ 9
3: Output: OptimalActiveMapping

4:

5: OptimalActiveMappingCost = +∞
6: for each (Pi, Pj) ∈ ActivePositions× ActivePositions, i 6= j do
7: ActiveMapping = {Agent1 ← Pi, Agent2 ← Pj, OnBallP layer ← Ball}
8: ActiveMappingCost = ActiveCost(ActiveMapping)
9: if ActiveMappingCost < OptimalActiveMappingCost then
10: OptimalActiveMapping = ActiveMapping

11: OptimalActiveMappingCost = ActiveMappingCost

12: end if
13: end for
14: return OptimalActiveMapping

2. Angle towards goal ϑi, the sum of the absolute angles between the agent and the
ball and between the ball and the opponent’s goal.

Given an Active subset with 3 players, the On Ball player is determined as follows:

ActiveSubset = {Agent1, Agent2, Agent3}

Valuei = di + aϑi,where a ∈ R is a weight, default=0.01

OnBallPlayer = arg min
i

(V aluei)

Additionally, we give a small advantage to the agent who had been assigned this action in
the previous coordination cycle over the other players. We do this to prevent continuous
changes in the assignment of the On Ball player, when several two agents have similar
distances and angles from the ball. This advantage takes the form of a value decrease
(default: 1).

Active Players Optimal Mapping

Next in the active coordination phase, we have to assign positions for the other two agents
left in the Active subset. Algorithm 4 shows how we can find the optimal mapping by

Georgios Methenitis 65 August 2012

5. TEAM COORDINATION

exhaustively enumerating and evaluating each possible assignment. During evaluation,
we also take into account the position assignment of the On Ball agent, which will be
helpful in order to find possible collisions between the On Ball agent and the remaining
active ones. More specifically, the evaluation function scores each possible mapping using
the following features defined for each agent i:

1. Distance Cd,i - This is the distance between the current and the target positions
of agent i. Agents try to minimize this feature to be able to reach their target
positions as soon as possible.

2. Potential Collisions Cc,i - Approximating the route of each agent as a straight
line between the current and the target positions, we check if the route of agent
i intersects with the routes of the other two agents. For any pair of routes, if
there is no intersection, the cost is 0 (infinitesimal probability of collision). If there
is intersection and the intersection point is approximately equidistant from the
current positions (the absolute difference is less than 1.5 meters), the cost is 100
(high probability of collision). Finally, if there is intersection but the intersection
point is not equidistant from the current positions, the cost is 2 (small probability
of collision). This feature returns the sum of these costs over the two pairs of
routes considered for agent i. Figure 5.8 shows the key idea behind the detection
of a possible collision between two agents. If |d1 − d2| ≤ 1.5, a collision is highly
possible. Agents try to minimize this feature to avoid collisions.

3. Field Utility Cu,i - This is the absolute value of the field utility (cf. Section 5.6)
for the position assigned to player i. Agents try to maximize this feature to give
preference to positions with better utilities.

4. Close Targets Ct,i - This is the sum of absolute differences between the target
positions of agent i and the other two agents. Agents try to maximize this feature
to give preferences to targets that are not too close.

5. Horizontal Stretch Ch,i - This is the sum of absolute differences between the X-
axis coordinates of the target positions of agent i and the other two agents. Agents
seek to maximize this feature to stretch horizontally in the field and have better
region coverage and unblocked fields of view.

Georgios Methenitis 66 August 2012

5.9 Team Formation Generation

Figure 5.8: Collision Detection Feature in the Evaluation Function.

The features described above are computed for each of the three agent, are weighted, and
are summed to form the final evaluation function of a mapping:

ActiveCost(ActiveMapping) =
3∑

i=1
wdCd,i + wcCc,i − wuCu,i − wtCt,i − whCh,i

where (wd, wc, wu, wt, wh) are the weights of the features, currently set at (1, 1, 1/7, 1, 1).
Despite the exhaustive enumeration, the number of possible mappings remains small

enough to find the best one in real-time. Given that the maximum number of candidate
active positions in our case is 9 and the numbers of agents is 2, the number of all possible
mappings is

(
9
2

)
2! = 72. In general, for n positions and k agents, we would have to

consider
(

n
k

)
k! = n!

(n−k)! .

5.9 Team Formation Generation

Team formation itself is not of major focus in this thesis, but serves to set up the role
assignment function and the coordination of the support subset. In general, the formation
of the team is determined by the position of the ball into the field. The formation is broken
up into four groups and includes all players of the team. This section presents a simple
for generating team formations for both the 0.6.5 and 0.6.6 versions of the rcssserver3d
soccer simulator.

Georgios Methenitis 67 August 2012

5. TEAM COORDINATION

9-Players Server Version (0.6.5)

Table 5.1 shows the four groups of roles in our formation for the 9-player team, the
corresponding short identifier, and a short description for each role. Figure 5.9 shows
how the different role positions of the formation are depicted into the soccer pitch. Since
the formation is a function of the ball position, when the ball is located near or outside
the field limits formation positions are adjusted to not exceed the field limits.

The Forwards are positioned so that they are ready for an attack at all times. If the
ball is on the opponent’s half of the field, Forwards are assigned positions near the ball.
In particular, the Forward Center is given a position close to the ball and the other two
Forwards are given positions on either side of the ball in an angle and a distance offset
which are dynamically determined by the exact coordinates of the ball. If the ball is
located in our half of the field, then the Forwards are given positions near the ball as in
the previous case, however their positions cannot be below a limiting X-axis coordinate
which is close to the middle of the field.

On the other hand, Defenders are mainly positioned to guard our goal. To determine
their position on the field a line segment is computed between our team’s goal and the
ball. The Defender Center is given a position on this line segment at a distance that
ranges between 2 and 3 meters from our goal proportional to the length of this segment.
The positions of the other two Defenders are located on either side of the Defender Center.

The Midfielders are positioned to support either the Forwards or the Deferenders.
When the ball is located in the opponent’s half of the pitch, Midfielders are given positions
near the Forwards in order to support a possible attack. When the ball is located in our
half of the pitch, they are given positions in front of our defense line defined by the three
Defenders.

Finally, the Goalkeeper position is determined independently to always be in the best
position to stop a shot towards our goal.

11-Players Server Version (0.6.6)

Table 5.2 shows the four groups of roles in our formation for the 11-player team, the
corresponding short identifier, and a short description for each role. Figure 5.10 shows

Georgios Methenitis 68 August 2012

5.9 Team Formation Generation

Table 5.1: Team Formation Description for the 9-Players Version

Group Role Description

Goalkeeper GK Goalkeeper
Defenders DR Defender Right

DL Defender Left
DC Defender Center

Midfielders MR Midfielder Right
ML Midfielder Left

Forwards FR Forward Right
FL Forward Left
FC Forward Center

Figure 5.9: Template of Role Positions in the Team Formation for the 9-Players Version.

how the different role positions of the formation are depicted into the soccer pitch for the
newest server version in which team consists of eleven players. Again, since the formation
is a function of the ball position, when the ball is located near or outside the field limits
formation positions are adjusted to not exceed the field limits.

Georgios Methenitis 69 August 2012

5. TEAM COORDINATION

Table 5.2: Team Formation Description for the 11-Players Version

Group Role Description

Goalkeeper GK Goalkeeper
Defenders DR Defender Right

DL Defender Left
DC Defender Center

Midfielders MR Midfielder Right
ML Midfielder Left
MC Midfielder Center

Forwards SF Forward Support
FR Forward Right
FL Forward Left
FC Forward Center

Figure 5.10: Template of Role Positions in the Team Formation for the 11-Players Version.

The Forwards are positioned based on the same principles as the previous version’s
approach. The additional player, Forward Support, is positioned behind the Forward
Center at a fixed distance. The additional player in the Midfielders, Midfielder Center,

Georgios Methenitis 70 August 2012

5.9 Team Formation Generation

Figure 5.11: Role Positions in Team Formation for Various Ball Positions (in red).

Georgios Methenitis 71 August 2012

5. TEAM COORDINATION

is positioned behind the Forward Support at a fixed distance. The other two Midfielder
positions are on either side of the Midfielder Center in an angle and a distance offset
which are dynamically determined by the exact coordinates of the Midfielder Center. The
Defense line is determined exactly as in the previous version. As before, the Goalkeeper
is totally independent. Figure 5.11 presents three different team formation corresponding
to three different ball positions.

5.10 Team Roles Assignment

In this section we present the role assignment function, which assigns roles to all agents.
This will prove to be very helpful in the next coordination phase, when we have to find
candidate positions for the support subset. Given a generated team formation we have
to assign roles to the active subset. Recall that positions for the active agents are strictly
tied to the position of the ball in the field. So, for any given number of active players, we
choose an equal number of team formation positions which are closest to the ball and we
assign the corresponding roles to the active players. The remaining team roles and their
positions, in particular, will be available to the support subset as candidate positions
during the support coordination process. Figure 5.12 shows how the role assignment
function works. Active players will be assigned the red team roles due to the fact that
they are located near to the position of the ball. Note that the roles assigned to the
active players will not necessarily be the three Forwards roles. Excluding the roles bound
to active players, the remaining roles marked in grey are the ones the support players
will compete for. A naive role mapping function would have assigned roles statically to
specific players. This approach will perform poorly in such a dynamic environment. It
would also be weak in situations where an agent assigned to a defensive role may end
up being beamed out of field due to a penalty without being able to exchange roles with
another player who may be in a better position to defend our goal. In our dynamic
approach, every role mapping is calculated with a full sense of the world state, resulting
in a dynamically adaptive way of assigning roles to the agents. During testing, there were
several cases in which a forward player ended up assuming a defense role at the end of
the game or the opposite.

Georgios Methenitis 72 August 2012

5.11 Determination of Support Positions

Figure 5.12: Role Assignment Function for a Given Team Formation.

5.11 Determination of Support Positions

In this section, we are going to discuss about which roles and positions of the team
formation will be assigned to the support subset. In an ideal case, there would be an equal
number of support agents and roles/positions; this is true only when the inactive subset
is empty. In this case, the positions for the support subset are determined automatically.
In most cases, however, there are some inactive players and therefore we have to decide
which positions of the team formation will be selected for the support subset. Using
the position of the ball as a guide, we have to ensure that there will be positions for
support players near the ball. So, for any given number of support players, we choose an
equal number of team formation positions (excluding the ones given to the active players)
which are closest to the ball and we assign the corresponding roles to the support players.

Georgios Methenitis 73 August 2012

5. TEAM COORDINATION

Figure 5.13: Determination of Support Positions from a Given Team Formation.

Figure 5.13 shows an example where there is one inactive player and therefore one role
from the team formation is discarded, namely the one farthest away from the ball.

5.12 Support Players Coordination

This is the final step of the coordination process, which maps support players to support
positions. In Section 5.8 we showed how the active players determine such a mapping
optimally. Unfortunately, this optimal algorithm is not applicable to the support sub-
set due to prohibitive computational costs in certain cases. Given that the size of the
support subset varies between 0 and 8 or 10 (depending on the server’s version and the
coordination type) and considering only an equal number of support positions, in the
worst case the exhaustive algorithm would have to examine between 40320 and 3628800

Georgios Methenitis 74 August 2012

5.12 Support Players Coordination

possible mappings. Our experience has shown that the exhaustive algorithm can work
satisfactorily on support subsets of size up to 6 (720 possible mappings), assuming an
equal number of candidate support positions.

Given the difficulties of applying the exhaustive algorithm to the support subset,
we turned our attention to approximate, yet fast and effective, approaches in order to
avoid delays in our think cycle. Our support coordination algorithm scheme is based
on a method proposed by the UT Austin Villa team [1]. Their approach is based on
dynamic programming and is able to compute an approximately optimal solution within
the time constraints imposed by the duration of the think cycle (≈ 20ms). Our version of
this algorithm is shown as Algorithm 5. Each mapping is evaluated using an evaluation
function that combines some of features we used in active coordination (cf. Section 5.8).
More specifically, the evaluation function scores each possible support mapping using
the Distance Cd,i and Potential Collisions Cc,i features defined for each agent i. The
features described above are computed for each of the support agents, are weighted, and
are summed to form the final evaluation function of a mapping:

SupportCost(SupportMapping) =
n∑

i=1
wdCd,i + wcCc,i

where (wd, wc) are the weights of the features, currently set at (1, 1). The remaining three
features from active coordination are not applicable in support coordination, because the
number of positions is equal to the number of agents and these features degenerate to
meaningless constants.

An example of support coordination is shown in Table 5.3. Mappings are built itera-
tively for position sets from {P1} to {P1, P2, P3} (columns from left to right) and agents
sets from {A1} to {A3} and the corresponding subsets (rows from top to bottom). At
each step of the algorithm, we make use of the mapping with the least cost for a subset
of agents and positions (found from the previous column) which is compatible with the
mapping we currently consider.

The original algorithm [1] is able to deliver an optimal solution due to a key recursive
property, which states that in any complete mapping, if a lower cost mapping is found
within some subset, then the cost of the complete mapping can be reduced by replacing
the complete mapping within the subset with the lower cost mapping. This property
holds for their evaluation function, which returns the maximum distance over all agents,

Georgios Methenitis 75 August 2012

5. TEAM COORDINATION

Algorithm 5 Support Players Mapping
1: Input: SupportP layers = {A1, A2, ..., An}, SupportPositions = {P1, P2, ..., Pn}
2: Input: OAM = OptimalActiveMapping

3: Output: BestSupportMapping

4:

5: BestSupportMapping[s] = ∅, where s ⊆ SupportP layers

6: BestSupportMappingCost[s] = +∞, where s ⊆ SupportP layers

7: for k = 1→ n do
8: for each α in SupportP layers do
9: S =

(
n−1
k−1

)
sets of k − 1 agents from SupportP layers− {α}

10: for each s in S do
11: SupportMapping = {α← Pk} ∪BestSupportMapping[s]
12: SupportMappingCost = SupportCost(SupportMapping,OAM)
13: if SupportMappingCost < BestSupportMappingCost[{α} ∪ s] then
14: BestSupportMapping[{α} ∪ s] = SupportMapping

15: BestSupportMappingCost[{α} ∪ s] = SupportMappingCost

16: end if
17: end for
18: end for
19: end for
20: return BestSupportMapping[SupportP layers]

given an assignment of positions to agents. However, this is not true for our evaluation
function because of the Potential Collisions feature and therefore the best we can hope
for is a good solution with no guarantees for optimality. Nevertheless, there is significant
reduction in computational cost. Recall that, in the kth iteration of the algorithm, each
agent will be assigned to the Pk position. The previous k − 1 positions will be assigned
to the other n − 1 agents. These assignments result in a total of

(
n−1
k−1

)
mappings to

be evaluated in each iteration for each agent. Therefore, the total number of mappings
considered for all n agents and n positions is:

n
n∑

k=1

(
n− 1
k − 1

)
= n

n−1∑
k=0

(
n− 1
k

)
= n2n−1

This represents a reduction to 1024 and 5120 mappings for 8 and 10 agents/positions

Georgios Methenitis 76 August 2012

5.13 Goalkeeper Behavior

Table 5.3: Mappings Evaluated by the Support Players Mapping Algorithm.

{P1} {P1, P2} {P1, P2, P3}
{A1 ← P1} {A1 ← P2} ∪ arg min({A2} ← {P1}) {A1 ← P3} ∪ arg min({A2, A3} ← {P1, P2})
{A2 ← P1} {A1 ← P2} ∪ arg min({A3} ← {P1}) {A2 ← P3} ∪ arg min({A1, A3} ← {P1, P2})
{A3 ← P1} {A2 ← P2} ∪ arg min({A1} ← {P1}) {A3 ← P3} ∪ arg min({A1, A2} ← {P1, P2})

{A2 ← P2} ∪ arg min({A3} ← {P1})
{A3 ← P2} ∪ arg min({A1} ← {P1})
{A3 ← P2} ∪ arg min({A2} ← {P1})

respectively compared to 40320 and 3628800 mappings of the exhaustive algorithm.

5.13 Goalkeeper Behavior

This section presents the behavior that leads goalkeeper to make decisions and choose
actions for itself. As mentioned in Section 4.1, the goalkeeper is the only agent in our
team who “runs” his own behavior. His behavior depends on a finite state machine shown
in Figure 5.14. The initial state is the Localize state in which the goalkeeper tries to
position himself between the two goal posts of the own goal facing the field. Once this
is accomplished, the FSM switches to the Guard state in which it makes use of the
Track Moving Object action on the ball to figure out its current position, direction, and
speed. The goalkeeper stays in the Guard state as long as the ball is outside the goal
area. If the ball moves within the goal area and there are no other agents near the ball,
the goalkeeper switches to the Libero state in which it tries to clear the ball from the
goal area while the coordination process switches to Support mode so that other players
refrain from going to the ball. When the ball is cleared, the goalkeeper returns to the
Localize state.

Figure 5.15 demonstrates the goalkeeper behavior in the Guard state. Recall that
the Track Moving Object action using an egocentric reference system, marked with red
dashed lines in the figure. At all times, the goalkeeper tries to compute the intersection
point between its Y -axis and the grey dashed line which represents the direction of motion

Georgios Methenitis 77 August 2012

5. TEAM COORDINATION

Localizestart Guard Libero

in position
ball in goal area

after fall

ball cleared

Figure 5.14: Finite State Machine for the Goalkeeper Behavior.

Figure 5.15: Goalkeeper Behavior in the Guard State.

of the ball. If there is an intersection point between these two lines, the agent checks if
this point falls between the two thresholds (ThresholdRight,ThresholdLeft) marked in the

Georgios Methenitis 78 August 2012

5.13 Goalkeeper Behavior

Figure 5.16: An Example of a Goalkeeper Fall to Prevent Opponents from Scoring.

figure. If yes, we are quite sure that the ball is heading towards our goal. We compute
the time it will take for the ball to reach our Y -axis according to its speed and taking
account the friction between the ball and the ground. If this time is less than or equal
to the time it takes for our agent to fall, then the goalkeeper performs a right or left fall.
An example goalkeeper fall to prevent a goal is shown in Figure 5.16.

Georgios Methenitis 79 August 2012

5. TEAM COORDINATION

Georgios Methenitis 80 August 2012

Chapter 6

Results

In this chapter we present the results of our approach in every important part of our
work. We are going to describe through examples and test results what we have achieved
in the motion part, in the communication part, in the coordination part and finally and
the most important the overall results which are obtained from real competitive soccer
matches against other teams who have participated in at least one time at RoboCup 3D
Simulation League in the past.

6.1 Motion

This section presents the improvements we have accomplished to achieve in the motion
part of our agent. In general, as we described in motion Section 4.5 , motion files are
generated by other teams or other platforms such as FIIT project or Webots Simulator.
We can only optimize these motions through several tests. Optimization of these motions,
make motion part of our player skills to reach an adequate level. Table 6.1 presents the
improvements made in motions only in cases that it was possible. Optimized walk motion
has reached a speed up to .45m/s which is comparable but much slower than the UT
Austin Villa’s walking engine which produces a walk motion of .71m/s. Furthermore
strong kick movement has reached a 5.5 meters range in just 2.5 seconds of execution.
Turn motion is using Webots motion files. Turning which has reached to a speed up to
30 degrees per second.

Georgios Methenitis 81 August 2012

6. RESULTS

Table 6.1: Motion’s Performance Improvement (Averaged Speeds and Ranges)

Motion Version Walk(m/s) Turn(d/s) Kick(m) Strong Kick(m)

Webots (Text-Based) 0.11 21 3 -
FIIT (XML) 0.22 25 3 (4 Sec.) 4 (5 Sec.)
AST_3D 0.45 30 3 (2.5 Sec.) 5.5 (2.5 Sec.)

6.2 Communication

Testing communication process through ideal external communication, when only our

team has the ability to send messages achieved good results. Agents were able to “hear”

all their teammates in an averaged 24 simulation cycles. In addition, even in real matches

conditions when both teams had the ability to send messages to their teammates the

results remained approximately the same. Table 6.2 presents the performance of each

communication phase during coordination process. We can realize that there are not

serious delays in these communication phases. This happens due to the fact soccer

simulation server does not allow players to send messages in the same server cycle. We

take advantage of the fact that there are separately tracked capacities for both teams,

sending our messages only in labeled timed slices we ensure that opponent team will not

able to block our messages even in extreme conditions when opponents shout messages

constantly. The only case that our team is exposed in opponents broadcasting is when

opponents choose the same time slices (cycles), as we do, to shout their messages.

Table 6.2: Communication Results in Ideal and Match Conditions

Communication Phase Ideal (Cycles (Sec.)) During Match (Cycles (Sec.))

Init Messages 24 (0.48) 24 (0.48)
Coordination Messages 24 (0.48) 42.5 (0.85)

Action Messages 24 (0.48) 24 (0.48)

Georgios Methenitis 82 August 2012

6.3 Goalkeeper

Table 6.3: Goalkeeper Averaged Results in Half-Games.

GoalKeeper Type Goals Conceded

No Goalkeeper 7
Goalkeeper, “Empty” Behavior 7
Goalkeeper, “Full” Behavior 3

6.3 Goalkeeper

To determine his ability to stop or to delay seriously opponents from scoring, we ran
several tests in three different conditions. In these three tests, players other than goal-
keeper did not take part. First, we did not use a goalkeeper, allowing our opponents to
reach our goal without any obstacle in their way. Opponents team managed to score an
averaged of seven goals in this case. Next, we used an agent as the goalkeeper but with
an “empty” behavior with which he was not able to perform any motion or to track the
ball, standing useless and still at the center of our goal. Opponents team managed to
score equal amount of goal with (No Goalkeeper) test. In our final test, we used a goa-
keeper which made use of its current behavior developed by us. We achieved in reducing
conceded goal from seven to three. Table 6.3 presents these results.

6.4 Coordination

Coordination Beliefs Update

As we have mentioned before in this thesis (cf. Section 5.4), coordination beliefs are very
important in order for coordinator to have an adequate knowledge of the world state.
Most of functionalities of the coordination protocol are depended on these beliefs. Most
important of these beliefs is the estimation about the position of the ball. Estimation
derived by weighted observation sets gave nice results. Figure ?? presents the estimated
position of the ball (blue circle) in several examples. Recall, that every observation set has
a distance threshold; these thresholds are defined in the corresponding figures with a cyan
and red circle. Observation sets depicted with a red circle imply that they have more that

Georgios Methenitis 83 August 2012

6. RESULTS

one observation in them. On the other hand cyan ones include only one observation. The
white circles having small radii, represent individual observations coming from agents.

Figure 6.1: Estimated Position of the Ball in Four Examples.

Coordination Achievements

Coordination is the most significant part in this thesis. As we have presented in Chap-
ter 5 of this thesis, coordination is responsible for assigning roles to the players, finding
strategic positions, computing optimal mappings among players and positions. We have
discussed every aspect of this procedure and now we present the results of this dynamic
procedure. Coordination, expectedly, gave very good results. In a dynamic environment
like this, in which there is a big need for dynamic coordination and cooperation among
the agents we achieved to create a coordination system which has several advantages over

Georgios Methenitis 84 August 2012

6.4 Coordination

other coordination systems with more static approaches. Some of the most important
advantages of our coordination protocol is described below.

Offensive Positioning Finding and assigning worthy positions to the agents while our
team is in an offensive situation was a main goal of our positioning system. In every
occasion in which an agent of our team has the ball in its possession, Active agents
are assigned optimal positions according to a specific evaluation method to support
the on ball player. Figure 6.2 presents an example of this positioning system. As
we can realize, active players are given routes to follow to be close to the opponents’
goal, seeking to exploit any arising opportunity to score a goal. Figure ?? presents
another example, a possible shoot by the on ball player will give active agents the
chance to score a goal.

Georgios Methenitis 85 August 2012

6. RESULTS

Figure 6.2: Offensive Positioning Resulting by Coordination Protocol, Example 1.

Georgios Methenitis 86 August 2012

6.4 Coordination

Figure 6.3: Defensive Positioning Resulting by Coordination Protocol, Example 1.

Defensive Positioning Finding and assigning positions to the agents while our team
was in a defensive situation was another main target of our positioning system. In
every occasion, in which our team is on a defensive role in the field, active agents
are assigned worthy positions to support the on ball player and protect possible
opponent’s strike towards our goal. As we can realize, active players are assigned
positions in the field which are proven disastrous for the opponents. Figures 6.3, 6.4
presents two examples of the defending positioning system, Active players have
blocked in both cases the opponent agent’s way to our goal.

Formation Consistency Dynamic role assignment was one of the most significant parts
of our team coordination system. In many occasions during game-play we have
seen too many times agents changing roles and duties with each other. Team
coordination system was built for that, to be adaptable in different situations inside
a mostly dynamic environment like robotic soccer. This function resulting our team
to have an adequate role distribution in every moment within a simulation soccer
game. Agents are assigned roles which are proven to be worthy and costless in

Georgios Methenitis 87 August 2012

6. RESULTS

Figure 6.4: Defensive Positioning Resulting by Coordination Protocol, Example 2.

terms of the overall movement of our team into the soccer field. Figure 6.5 presents
how this advantage of our coordination protocol depicted in the soccer field during
game time. Active agents, as well as, on ball player are assigned specific roles from
the available team formation roles. Remaining roles are available to be assigned
to other players. Each one of the agents in blue circle is assigned a specific role
which is described. For every given time in a soccer match our team will follow this
property, resulting to a well placed team in the field, where all agents are going to
have positions which are worthy and reasonable towards soccer variables.

Georgios Methenitis 88 August 2012

6.4 Coordination

Figure 6.5: Formation Consistency Resulting by Coordination Process Via Team Roles
Assignment.

Georgios Methenitis 89 August 2012

6. RESULTS

6.5 Games

Finally, in order to test our created team in the most realistic way. We decide to test our
team in real conditions playing against teams that have already participated in RoboCup
3D Soccer Simulation League. We have selected nine teams from the competition held
in Istanbul, 2011 and one team (MAK) from Iran open, 2011. These teams are:

RoboCanes University of Miami, USA

UT Austin Villa University of Texas at Austin, USA

NomoFC Osaka University, Japan

OxBlue University of Oxford, UK

L3MSIM Paris8 University,France

Kaveh Shahid Rajaee University, Iran University of Science and Technology, Iran

beeStanbul Istanbul Technical University, Turkey

Farzanegan Farzanegan high school, Iran

MAK Ehsan Mosavi, University Of Kerman Mehravaran ,3D Robotics, Iran

FUTK3D Fukui University of Technology, Japan

Individual Games

Playing against these teams, most of these have participated into one or more Robocup
competitions, we have gained a lot of experience and we have seen how our team and
especially our coordination protocol functions in different situations in a such dynamic
environment. Due to lack of dynamic motions, our agents have poor movement especially
in comparison with the Simulation league’s best teams. However, we were able to perform
well and score some goals against weaker teams of this competition.

After all these test-matches against teams who have participated into one or more
Robocup competitions, we have gained a lot of experience and we have seen how our team
reacts in different situations in such a dynamic environment. Due to lack of dynamic

Georgios Methenitis 90 August 2012

6.5 Games

Table 6.4: All Played Games Results

Team W D L AGD1 Games

UTAustinVilla 0 0 4 -5.2 4
Robocanes 0 0 1 -6.0 1
BeeStanbul 0 0 3 -4.0 3
NomoFC 1 2 0 +0.3 3

Rail 0 4 0 0.0 4
OxBlue 0 0 2 -1.5 2
FUTK3D 0 5 0 0.0 5

FARZANEGAN 1 1 0 +0.5 2
MAK 2 0 0 +2.0 2

L3M-SIM 3 2 0 +0.6 5

motions, our agents has poor movement especially in comparison with the RoboCup
Simulation league’s best teams. However, we were able to perform well and score some
goals against weaker teams of this competition.

All executable binaries from teams are from previous events binaries, [Available online:
http://simspark.sourceforge.net/binaries/RoboCup2011/]. All games had 10 min-
utes duration, same as real competition matches in official Robocup competition. Server
and monitor were running in the same machine2. Each one of the teams binaries was
running in a separate machine3. Table 6.4 presents the results between our team and
opponent teams. There is information about the average goal difference, the number of
wins, the number of draws, the number of loses, and the total number of games we played
with each team.

1AGD: Averaged Goal Difference
2Server: Intel Core 2 Duo 3.16 Ghz, 5.8GiB Ram
3Client1: Intel Core 2 Duo 1.86 Ghz, 2GiB Ram
3Client2: Intel Quad Core i5 3.3 Ghz,4GiB Ram

Georgios Methenitis 91 August 2012

http://simspark.sourceforge.net/binaries/RoboCup2011/

6. RESULTS

Table 6.5: Mini Tournament (Tournament not completed yet)

Team P W D L F A Pts
AST3D 8 2 6 0 2 0 12
NomoFC 2 0 1 1 0 1 1
L3M-SIM 2 0 1 1 0 1 1
Rail 2 0 2 0 0 0 2
farzanegan 2 0 2 0 0 0 2

Mini Tournament

Finally, we held a mini tournament in which teams participated in it were selected in
order to have a competitive and in equal terms competition. Table 6.5 presents the result
table of this tournament. Win: 3 points, draw: 1 points, loss: 0 points.

Georgios Methenitis 92 August 2012

Chapter 7

Related Work

7.1 UT Austin Villa

UT Austin Villa [9] is the most known and the best team which is participating in the
Robocup’s simulation league. Their first appearance was in the Robocup 2007 held
in Atlanta, U.S.A, in July 2007. UT Austin Villa belongs to University of Texas and
consists of five members, professor Peter Stone, graduate students Patrick MacAlpine
and Samuel Barrett and finally two undergraduate students Nick Collins and Adrian
Lopez-Mobilia. The main characteristic of this team is its “state-of-art” omni-directional
walking engine. Its fast and stable walk is recognizable and offers them great movement.
A typical example of this great team’s results can be that in Robocup’s competition in
Istanbul 2011 this team won all 24 games it played and scored a total of 136 goals without
conceding any.

In their last paper about positioning [1], they explained an approach of player po-
sitioning in the field. First, a full team formation is computed. Second, each agent
computes the best assignment between agents and team formation positions according
to its belief about the world state. Finally, a coordination mechanism is used to choose
among all players’ suggestions. This coordination mechanism uses a voting system. Most
voted mapping will be used.

I am not the most appropriate person to judge their longterm work and contribution
to the Robocup’s simulation league, as I deal with this league only for a few months.
However, I would like to mention that in our approach there is a major difference in
the way that players coordinate their actions. The separation of the team into subsets

Georgios Methenitis 93 August 2012

7. RELATED WORK

makes it easier for us to solve all these problems caused due to complexity constraints.
Furthermore, we are using active’s group players in order to have a more dynamically
position assignment close to the position of the ball. Finally, I wish we had such a perfect
locomotion system as UT Austin Villa. It would be a nice challenge to compare these
two dynamic coordination systems in the same levels of motion’s skills.

7.2 BeeStanbul

The beeStanbul project [10] from the Artificial Intelligence and Robotics laboratory (AIR
lab) at Istanbul Technical University (ITU) is the first initiative from ITU to participate
in RoboCup competitions. It consists of five members and has been participating in
the Robocup’s competitions since RoboCup 2010 held in Singapore. It is a nice team
which accomplished to qualify up to second round in the last Robocup competition in
Mexico 2012. First, they are making use of both static and dynamic movements and their
walking machine is more than adequate. Concentrating in their work at the coordination
part of their project.They split team agents into three groups, defenders and attackers.
The attackers group involves the forward and the midfielder agents while the defenders
group involves only the defender agents.Since two agents are assigned to the goalkeeper
and the forward roles, the remaining seven agents are to be assigned to these roles. This
is accomplished by a distributed Voronoi cell construction approach in which each agent
calculates its own cell independently from that of the others. Therefore, every agent has
a differently shaped cell and these can overlap. The time complexity of the method is
O(n2) where n is the number of agents in the team. After constructing the cell for itself,
each agent determines the center of the cell as its new target. Agents become closer to
each other by using this strategy. In their approach, only teammates in the viewpoint of
the agent are considered.

We can realize that there can be situations in soccer games, in where each agent who
computes his own cell could be completely unaware if none of its teammates is located
in the field of its view. Having a better knowledge of teammates position in the soccer
field is a key feature in our coordination protocol.

Georgios Methenitis 94 August 2012

7.3 FUT-K_3D

7.3 FUT-K_3D

FUT-K_3D [12] that is mainly composed of undergraduate students of Fukui Univer-
sity of Technology in Japan has been organized since fall 2007. In their team description
paper for RoboCup 2011 competition, they presented coordinated motion by communica-
tion protocol and an implementation of probabilistic behavior selection. Communication
algorithm is inspired by a token passing mechanism of access control method for network
systems. An agent tries to broadcast its message to the others. Then, agent waits for
a confirmation to stop broadcasting this procedure continues with the next agent. In
coordination part of their paper, the nearest agent from the ball performs to approach to
the ball, and if that keeps the ball, it begins the movement of dribbling or kicks the ball.
Other agents begin the coordinated motion keeping a formation with each other. In ad-
dition, if the agent keeping the ball goes into other agent’As location, the rest starts the
position change corresponding to the location on agent keeping the ball. Their behavior
selection policy is based on a stochastic model called “Probabilistic Behavior Selection”
that even if they encounter the identical situation, they stochastically select one action
from multiple pre-defined behavior. They assume the probabilities of each behavior each
game. In addition, depending on the result of Probabilistic Behavior Selection, they also
consider a method to update action probabilities during the game.

7.4 Farzanegan

Farzanegan [13] Highschool Laboratory has been working on Robocup science for many
years. In their last team description paper for RoboCup 2011, they describe their work
about team coordination. They presented an approach about multi-agent collaboration,
based on strategical positions, roles and responsibilities. Also like human soccer, each
agent has a strategical position that defines its default position and movement range in-
side the soccer field. So they have classified their strategical position into two categories:
initial and game-play. Strategical positioning, roles and responsibilities are inevitable in
soccer domain. Each agent has its own movement range based on its role and responsi-
bilities. When keeping an eye on the ball, the movement range will determine whether
the agent should go for the ball, or leave it to its team mates.

Georgios Methenitis 95 August 2012

7. RELATED WORK

As we can realize, a static approach for the team coordination in such a dynamic
environment.

Georgios Methenitis 96 August 2012

Chapter 8

Conclusion

We have presented a team’s framework for the Robocup 3D Simulation League - a phys-
ically realistic environment that is partially observable, non-deterministic, noisy and dy-
namic, as well as a dynamic coordination system which evaluates all the necessary world
state variables and be executed only by one agent -independent software process. Cre-
ating a team’s framework from scratch was a big challenge especially when this project
does not depend in any other external software except from motions files and the dynamic
programming implementation created by UT Austin Villa.

8.1 Future Work

Reaching to a level to oppose teams that have already participated in this robotic soccer
competition gives us an incentive to keep working in order to improve further our team.
In this section, we present some of these possible improvements.

Probabilistic Localization System

The robot localization problem is a key problem in making truly autonomous robots. If a
robot does not know where it is, it can be difficult to determine what to do next. In our
approach, there is an adequate localization scheme which can be improved further. Some
of our work and especially coordination protocol requires a more probabilistic localization
scheme.

Georgios Methenitis 97 August 2012

8. CONCLUSION

Dynamic Omni-Directional Movement

Most teams which have been participating into the RoboCup 3D Simulation League
make use of dynamic movement. This is a major drawback for our side and I really
hope this issue to be resolved in the near future. Team coordination will operate even
more efficiently since the faster movement of our agents will give even more dynamically
consistent results.

Passing

Hopefully, is a short-term goal for us to add passing feature in our framework. You can
realize that passing is a key attribute in every soccer team’s success. There have to be
improvements in team formation in order for passing to be implemented well into it.

Testing and Debugging in New Server’s version

There are things to be tested in order our team to meet the standards of the new server’s
version 0.6.6 in which there are some changes with most important that there are now
eleven players for each side and field’s size has changed.

Participation in Robocup

Robocup is a well-known competition especially for people who are interested in robotic
soccer and artificial intelligence in general. It is not going to be easy for our team to be
competitive at once but it will be a nice experience. Furthermore, we are going to have
the opportunity to test our agent in real competition matches.

Georgios Methenitis 98 August 2012

References

[1] MacAlpine, P., Barrera, F., Stone, P.: Positioning to win: A dynamic role assign-
ment and formation positioning system. In: Proceedings of the RoboCup Interna-
tional Symposium. (2012) 75, 93

[2] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:
Robocup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 3

[3] Robocup: Soccer simulation league wiki Only available online: http://wiki.
robocup.org/wiki/Soccer_Simulation_League. 13

[4] SimSpark: Wiki Only available online: http://simspark.sourceforge.net/wiki.
13

[5] Abeyruwan, S., Seekircher, A., Stoecker, J., Visser, D.U.: Roboviz monitor Only
available online: https://sites.google.com/site/umroboviz/. 17

[6] Papadimitriou, V.: Localization in simspark environment (2012) Autonomous
Agents Fall Semester, Only available online: http://www.intelligence.tuc.gr/
~robots/ARCHIVE/2011w/projects/TUCagent3D/home.html. 28

[7] FIIT: Robocup 3d Slovak University of Technology in Bratislava, Only available
online: http://fiitrobocup3d.sourceforge.net/. 34

[8] Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems 1(1) (2004) 39–42 37

[9] UTAustinVilla: Utaustinvilla Only available online: http://www.cs.utexas.edu/
~AustinVilla/sim/3dsimulation/. 93

Georgios Methenitis 99 August 2012

http://wiki.robocup.org/wiki/Soccer_Simulation_League
http://wiki.robocup.org/wiki/Soccer_Simulation_League
http://simspark.sourceforge.net/wiki
https://sites.google.com/site/umroboviz/
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2011w/projects/TUCagent3D/home.html
http://www.intelligence.tuc.gr/~robots/ARCHIVE/2011w/projects/TUCagent3D/home.html
http://fiitrobocup3d.sourceforge.net/
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

REFERENCES

[10] Demirdelen, B., Toku, B., Ulusoy, O., Sonmez, T., Ayvaz, K., Senyurek, E.,
Sariel-Talay, S.: beestanbul robocup 3d simulation league team description pa-
per (2012) Only available online: http://air.cs.itu.edu.tr/publications-1/
beeStanbul_TDP2012.pdf. 94

[11] Mohammadi, N., Yassari, M., Zahiri, S.A., Salehi, M.: Kaveh robocup 3d simula-
tion league team description paper (2011) Only available online: http://hedayat.
fedorapeople.org/misc/rc2011tdps/.

[12] Yashiki, M., Miyajima, K., Sugihara, K., Ohkuma, K., Yamanishi, T.: Fut-k_3d
robocup 3d simulation league team description paper (2011) Only available online:
http://hedayat.fedorapeople.org/misc/rc2011tdps/. 95

[13] Mousaviyan, A.S., No, S.J., Davari, A.S.A.M., Makki, F.S., Dastserri, N.S.: Farzane-
gan robocup 3d simulation league team description paper (2011) Only available on-
line: http://hedayat.fedorapeople.org/misc/rc2011tdps/. 95

Georgios Methenitis 100 August 2012

http://air.cs.itu.edu.tr/publications-1/beeStanbul_TDP2012.pdf
http://air.cs.itu.edu.tr/publications-1/beeStanbul_TDP2012.pdf
http://hedayat.fedorapeople.org/misc/rc2011tdps/
http://hedayat.fedorapeople.org/misc/rc2011tdps/
http://hedayat.fedorapeople.org/misc/rc2011tdps/
http://hedayat.fedorapeople.org/misc/rc2011tdps/

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 The RoboCup Competition
	2.1 RoboCup Soccer
	2.2 RoboCup Rescue
	2.3 RoboCup@Home
	2.4 RoboCup Junior

	3 RoboCup 3D Simulation League
	3.1 SimSpark Soccer Simulator
	3.2 Robot Model
	3.3 Server
	3.4 Monitor
	3.4.1 SimSpark Monitor
	3.4.2 Roboviz Monitor

	3.5 Perceptors
	3.5.1 General perceptors
	3.5.2 Soccer perceptors

	3.6 Effectors
	3.6.1 General Effectors
	3.6.2 Soccer Effectors

	4 Player Skills
	4.1 Agent Architecture
	4.2 Connection
	4.3 Perceptions
	4.4 Localization
	4.4.1 Self Localization
	4.4.2 Object Localization
	4.4.3 Localization Filtering

	4.5 Motion
	4.5.1 XML-Based Motion Files
	4.5.2 XML-Based Motion Controller
	4.5.3 Text-Based Motion Files
	4.5.4 Text-Based Motion Controller
	4.5.5 Dynamic Motion Elements

	4.6 Actions
	4.6.1 Basic Actions
	4.6.2 Complex Actions

	4.7 Communication

	5 Team Coordination
	5.1 Coordination Protocol
	5.2 Coordination Modes
	5.3 Coordination and Communication
	5.4 Coordination Beliefs Update
	5.5 Determination of Coordination Subsets
	5.6 Soccer Field Utility Fuction
	5.7 Determination of Active Positions
	5.8 Active Players Coordination
	5.9 Team Formation Generation
	5.10 Team Roles Assignment
	5.11 Determination of Support Positions
	5.12 Support Players Coordination
	5.13 Goalkeeper Behavior

	6 Results
	6.1 Motion
	6.2 Communication
	6.3 Goalkeeper
	6.4 Coordination
	6.5 Games

	7 Related Work
	7.1 UT Austin Villa
	7.2 BeeStanbul
	7.3 FUT-K_3D
	7.4 Farzanegan

	8 Conclusion
	8.1 Future Work

	References

